9种分布式ID生成之美团(Leaf)实战

2024-03-15 06:12

本文主要是介绍9种分布式ID生成之美团(Leaf)实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

​​​​​

前几天写过一篇《一口气说出 9种 分布式ID生成方式,面试官有点懵了》,里边简单的介绍了九种分布式ID生成方式,但是对于像美团(Leaf)滴滴(Tinyid)百度(uid-generator)都是一笔带过。而通过读者留言发现,大家普遍对他们哥三更感兴趣,所以后边会结合实战,详细的对三种分布式ID生成器学习,今天先啃下美团(Leaf)

不了解分布式ID的同学,先行去看《一口气说出 9种 分布式ID生成方式,面试官有点懵了》温习一下基础知识,这里就不再赘述了

美团(Leaf)

Leaf是美团推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”(“世界上没有两片相同的树叶”),取个名字都这么有寓意,美团程序员牛掰啊!

Leaf的优势:高可靠低延迟全局唯一等特点。

目前主流的分布式ID生成方式,大致都是基于数据库号段模式雪花算法(snowflake),而美团(Leaf)刚好同时兼具了这两种方式,可以根据不同业务场景灵活切换。

接下来结合实战,详细的介绍一下LeafLeaf-segment号段模式Leaf-snowflake模式

一、 Leaf-segment号段模式

Leaf-segment号段模式是对直接用数据库自增ID充当分布式ID的一种优化,减少对数据库的频率操作。相当于从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,业务服务将号段在本地生成1~1000的自增ID并加载到内存.。

大致的流程入下图所示:
在这里插入图片描述
号段耗尽之后再去数据库获取新的号段,可以大大的减轻数据库的压力。对max_id字段做一次update操作,update max_id= max_id + step,update成功则说明新号段获取成功,新的号段范围是(max_id ,max_id +step]。

由于依赖数据库,我们先设计一下表结构:

CREATE TABLE `leaf_alloc` (`biz_tag` varchar(128) NOT NULL DEFAULT '' COMMENT '业务key',`max_id` bigint(20) NOT NULL DEFAULT '1' COMMENT '当前已经分配了的最大id',`step` int(11) NOT NULL COMMENT '初始步长,也是动态调整的最小步长',`description` varchar(256) DEFAULT NULL COMMENT '业务key的描述',`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '数据库维护的更新时间',PRIMARY KEY (`biz_tag`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

预先插入一条测试的业务数据

INSERT INTO `leaf_alloc` (`biz_tag`, `max_id`, `step`, `description`, `update_time`) VALUES ('leaf-segment-test', '0', '10', '测试', '2020-02-28 10:41:03');
  • 1
  • biz_tag:针对不同业务需求,用biz_tag字段来隔离,如果以后需要扩容时,只需对biz_tag分库分表即可

  • max_id:当前业务号段的最大值,用于计算下一个号段

  • step:步长,也就是每次获取ID的数量

  • description:对于业务的描述,没啥好说的

将Leaf项目下载到本地:https://github.com/Meituan-Dianping/Leaf

修改一下项目中的leaf.properties文件,添加数据库配置

leaf.name=com.sankuai.leaf.opensource.test
leaf.segment.enable=true
leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
leaf.jdbc.username=junkang
leaf.jdbc.password=junkangleaf.snowflake.enable=false

注意leaf.snowflake.enable 与 leaf.segment.enable 是无法同时开启的,否则项目将无法启动。

配置相当的简单,直接启动LeafServerApplication后就OK了,接下来测试一下,leaf是基于Http请求的发号服务, LeafController 中只有两个方法,一个号段接口,一个snowflake接口,key就是数据库中预先插入的业务biz_tag


@RestController
public class LeafController {private Logger logger = LoggerFactory.getLogger(LeafController.class);@Autowiredprivate SegmentService segmentService;@Autowiredprivate SnowflakeService snowflakeService;/*** 号段模式* @param key* @return*/@RequestMapping(value = "/api/segment/get/{key}")public String getSegmentId(@PathVariable("key") String key) {return get(key, segmentService.getId(key));}/*** 雪花算法模式* @param key* @return*/@RequestMapping(value = "/api/snowflake/get/{key}")public String getSnowflakeId(@PathVariable("key") String key) {return get(key, snowflakeService.getId(key));}private String get(@PathVariable("key") String key, Result id) {Result result;if (key == null || key.isEmpty()) {throw new NoKeyException();}result = id;if (result.getStatus().equals(Status.EXCEPTION)) {throw new LeafServerException(result.toString());}return String.valueOf(result.getId());}
}

访问:http://127.0.0.1:8080/api/segment/get/leaf-segment-test,结果正常返回,感觉没毛病,但当查了一下数据库表中数据时发现了一个问题。
在这里插入图片描述
在这里插入图片描述
通常在用号段模式的时候,取号段的时机是在前一个号段消耗完的时候进行的,可刚刚才取了一个ID,数据库中却已经更新了max_id,也就是说leaf已经多获取了一个号段,这是什么鬼操作?
在这里插入图片描述

Leaf为啥要这么设计呢?

Leaf 希望能在DB中取号段的过程中做到无阻塞!

当号段耗尽时再去DB中取下一个号段,如果此时网络发生抖动,或者DB发生慢查询,业务系统拿不到号段,就会导致整个系统的响应时间变慢,对流量巨大的业务,这是不可容忍的。

所以Leaf在当前号段消费到某个点时,就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做很大程度上的降低了系统的风险。

那么某个点到底是什么时候呢?

这里做了一个实验,号段设置长度为step=10max_id=1
在这里插入图片描述
当我拿第一个ID时,看到号段增加了,1/10
在这里插入图片描述
在这里插入图片描述
当我拿第三个Id时,看到号段又增加了,3/10
在这里插入图片描述
在这里插入图片描述
Leaf采用双buffer的方式,它的服务内部有两个号段缓存区segment。当前号段已消耗10%时,还没能拿到下一个号段,则会另启一个更新线程去更新下一个号段。

简而言之就是Leaf保证了总是会多缓存两个号段,即便哪一时刻数据库挂了,也会保证发号服务可以正常工作一段时间。

在这里插入图片描述
通常推荐号段(segment)长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。

优点:

  • Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
  • 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。

缺点:

  • ID号码不够随机,能够泄露发号数量的信息,不太安全。
  • DB宕机会造成整个系统不可用(用到数据库的都有可能)。
二、Leaf-snowflake

Leaf-snowflake基本上就是沿用了snowflake的设计,ID组成结构:正数位(占1比特)+ 时间戳(占41比特)+ 机器ID(占5比特)+ 机房ID(占5比特)+ 自增值(占12比特),总共64比特组成的一个Long类型。

Leaf-snowflake不同于原始snowflake算法地方,主要是在workId的生成上,Leaf-snowflake依靠Zookeeper生成workId,也就是上边的机器ID(占5比特)+ 机房ID(占5比特)。Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。

在这里插入图片描述
Leaf-snowflake启动服务的过程大致如下:

  • 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
  • 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
  • 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。

Leaf-snowflake对Zookeeper是一种弱依赖关系,除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。一旦ZooKeeper出现问题,恰好机器出现故障需重启时,依然能够保证服务正常启动。

启动Leaf-snowflake模式也比较简单,起动本地ZooKeeper,修改一下项目中的leaf.properties文件,关闭leaf.segment模式,启用leaf.snowflake模式即可。

leaf.segment.enable=false
#leaf.jdbc.url=jdbc:mysql://127.0.0.1:3306/xin-master?useUnicode=true&characterEncoding=utf8
#leaf.jdbc.username=junkang
#leaf.jdbc.password=junkangleaf.snowflake.enable=true
leaf.snowflake.zk.address=127.0.0.1
leaf.snowflake.port=2181
    /*** 雪花算法模式* @param key* @return*/@RequestMapping(value = "/api/snowflake/get/{key}")public String getSnowflakeId(@PathVariable("key") String key) {return get(key, snowflakeService.getId(key));}

测试一下,访问:http://127.0.0.1:8080/api/snowflake/get/leaf-segment-test
在这里插入图片描述
优点:

  • ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。

缺点:

  • 依赖ZooKeeper,存在服务不可用风险(实在不知道有啥缺点了)
三、Leaf监控

请求地址:http://127.0.0.1:8080/cache

针对服务自身的监控,Leaf提供了Web层的内存数据映射界面,可以实时看到所有号段的下发状态。比如每个号段双buffer的使用情况,当前ID下发到了哪个位置等信息都可以在Web界面上查看。

在这里插入图片描述

总结

对于Leaf具体使用哪种模式,还是根据具体的业务场景使用,本文并没有对Leaf源码做过多的分析,因为Leaf 代码量简洁很好阅读。后续还会把其他几种分布式ID生成器,依次结合实战介绍给大家,欢迎大家关注。


今天就说这么多,如果本文对您有一点帮助,希望能得到您一个点赞👍哦

您的认可才是我写作的动力!

 

这篇关于9种分布式ID生成之美团(Leaf)实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/811040

相关文章

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

基于MongoDB实现文件的分布式存储

《基于MongoDB实现文件的分布式存储》分布式文件存储的方案有很多,今天分享一个基于mongodb数据库来实现文件的存储,mongodb支持分布式部署,以此来实现文件的分布式存储,需要的朋友可以参考... 目录一、引言二、GridFS 原理剖析三、Spring Boot 集成 GridFS3.1 添加依赖

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin