矩阵Matrix到欧拉角Euler转换

2024-03-14 23:48

本文主要是介绍矩阵Matrix到欧拉角Euler转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考文献:

http://www.geometrictools.com/Documentation/EulerAngles.pdf

但是这里的公式不能直接用,原因是左右手系空间不同,我这边采用Direct3D默认的右手系,参考:

https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dxmatrixrotationyawpitchroll

所以需要自行推导右手系公式,已知各个轴旋转矩阵公式:

R(\theta_{x})=\begin{bmatrix} 1 & 0 & 0\\ 0 & cos(\theta_{x}) & sin(\theta_{x})\\ 0 & -sin(\theta_{x}) & cos(\theta_{x}) \end{bmatrix}R(\theta_{y})=\begin{bmatrix} cos(\theta_{y}) & 0 & -sin(\theta_{y})\\ 0 & 1 & 0\\ sin(\theta_{y}) & 0 & cos(\theta_{y}) \end{bmatrix}R(\theta_{z})=\begin{bmatrix} cos(\theta_{z}) & sin(\theta_{z}) & 0\\ -sin(\theta_{z}) & cos(\theta_{z}) & 0\\ 0 & 0 & 1 \end{bmatrix}

欧拉角变换顺序为YXZ,则先计算YX矩阵

R(\theta_{y})\cdot R(\theta_{x})=\begin{bmatrix} cos(\theta_{y}) & sin(\theta_{y})\cdot sin(\theta_{x}) & -sin(\theta_{y})\cdot cos(\theta_{x})\\ 0 & cos(\theta_{x}) & sin(\theta_{x})\\ sin(\theta_{y}) & -cos(\theta_{y})\cdot sin(\theta_{x}) & cos(\theta_{y})\cdot cos(\theta_{x}) \end{bmatrix}

最终YXZ矩阵

R(\theta_{y})\cdot R(\theta_{x})\cdot R(\theta_{z})=\begin{bmatrix} cos(\theta_{y})\cdot cos(\theta_{z})-sin(\theta_{y})\cdot sin(\theta_{x})\cdot sin(\theta_{z}) & cos(\theta_{y})\cdot sin(\theta_{z})+sin(\theta_{y})\cdot sin(\theta_{x})\cdot cos(\theta_{z}) & -sin(\theta_{y})\cdot cos(\theta_{x}))\\ -cos(\theta_{x})\cdot sin(\theta_{z}) & cos(\theta_{x})\cdot cos(\theta_{z}) & sin(\theta_{x})\\ sin(\theta_{y})\cdot cos(\theta_{z})+cos(\theta_{y})\cdot sin(\theta_{x})\cdot sin(\theta_{z}) & sin(\theta_{y})\cdot sin(\theta_{z})-cos(\theta_{y})\cdot sin(\theta_{x})\cdot cos(\theta_{z}) & cos(\theta_{y})\cdot cos(\theta_{x})) \end{bmatrix}

可以直接得知 sin(\theta_{x})=r12,即 \theta_{x}=arcsin(r12),然后需要分三种情况

  1. \theta_{x}\in \left (-\frac{\pi }{2}, \frac{\pi }{2}\right ),可知tan(\theta_{y})=\frac {sin(\theta_{y})\cdot cos(\theta_{x})}{cos(\theta_{y})\cdot cos(\theta_{x})},即 \theta_{y}=arctan(\frac {-r02} {r22}),同理 \theta_{z}=arctan(\frac {-r10} {r11})
  2. 当 \theta_{x}=\frac{\pi}{2},则 sin(\theta_{x})=1,YXZ矩阵可简化为
    R(\theta_{yxz})=\begin{bmatrix} cos(\theta_{y})\cdot cos(\theta_{z})-sin(\theta_{y})\cdot sin(\theta_{z}) & cos(\theta_{y})\cdot sin(\theta_{z})+sin(\theta_{y})\cdot cos(\theta_{z}) & 0\\ 0 & 0 & 1\\ sin(\theta_{y})\cdot cos(\theta_{z})+cos(\theta_{y})\cdot sin(\theta_{z}) & sin(\theta_{y})\cdot sin(\theta_{z})-cos(\theta_{y})\cdot cos(\theta_{z}) & 0 \end{bmatrix}
    根据两角和公式,可得
    R(\theta_{yxz})=\begin{bmatrix} cos(\theta_{y}+\theta_{z}) & sin(\theta_{y}+\theta_{z}) & 0\\ 0 & 0 & 1\\ sin(\theta_{y}+\theta_{z}) & -cos(\theta_{y}+\theta_{z}) & 0 \end{bmatrix},即 \theta_{y}+\theta_{z}=arctan(\frac {r01}{r00}),且结果不唯一
  3. 当 \theta_{x}=-\frac {\pi}{2},则 sin(\theta_{x})=-1,YXZ矩阵简化为
    R(\theta_{yxz})=\begin{bmatrix} cos(\theta_{y})\cdot cos(\theta_{z})+sin(\theta_{y})\cdot sin(\theta_{z}) & cos(\theta_{y})\cdot sin(\theta_{z})-sin(\theta_{y})\cdot cos(\theta_{z}) & 0\\ 0 & 0 & -1\\ sin(\theta_{y})\cdot cos(\theta_{z})-cos(\theta_{y})\cdot sin(\theta_{z}) & sin(\theta_{y})\cdot sin(\theta_{z})+cos(\theta_{y})\cdot cos(\theta_{z}) & 0 \end{bmatrix}
    可得
    R(\theta_{yxz})=\begin{bmatrix} cos(\theta_{y}-\theta_{z}) & -sin(\theta_{y}-\theta_{z}) & 0\\ 0 & 0 & -1\\ sin(\theta_{y}-\theta_{z}) & cos(\theta_{y}-\theta_{z}) & 0 \end{bmatrix},即 \theta_{y}-\theta_{z}=arctan(\frac {-r01}{r00})

基于以上思路,就能实现D3DXMATRIX到欧拉角的转换代码

D3DXVECTOR3* D3DXMatrixToEulerAngles(D3DXVECTOR3* pOut, const D3DXMATRIX* pM)
{if (pM->_23 < 0.999f) // some fudge for imprecision{if (pM->_23 > -0.999f) // some fudge for imprecision{pOut->x = asin(pM->_23);pOut->y = atan2(-pM->_13, pM->_33);pOut->z = atan2(-pM->_21, pM->_22);}else{// WARNING.  Not unique.  YA - ZA = atan2(-r01,r00)pOut->x = -D3DX_PI * 0.5f;pOut->y = atan2(-pM->_12, pM->_11);pOut->z = 0.0f;}}else{// WARNING.  Not unique.  YA + ZA = atan2(r01,r00)pOut->x = D3DX_PI * 0.5f;pOut->y = atan2(pM->_12, pM->_11);pOut->z = 0.0f;}return pOut;
}

 

这篇关于矩阵Matrix到欧拉角Euler转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810112

相关文章

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义