【小沐学GIS】基于C++绘制三维数字地球Earth(OpenGL、glfw、glut)第一期

本文主要是介绍【小沐学GIS】基于C++绘制三维数字地球Earth(OpenGL、glfw、glut)第一期,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🍺三维数字地球系列相关文章如下🍺:
1【小沐学GIS】基于C++绘制三维数字地球Earth(456:OpenGL、glfw、glut)第一期
2【小沐学GIS】基于C++绘制三维数字地球Earth(456:OpenGL、glfw、glut)第二期
3【小沐学GIS】基于C++OpenSceneGraph(OSG)绘制三维数字地球Earth(7:OpenGL)
4【小沐学GIS】基于C++QT绘制三维数字地球Earth(8:OpenGL)
5【小沐学GIS】基于C++绘制太阳系SolarSystem(9:OpenGL、glfw、glut)
6【小沐学GIS】基于C#绘制三维数字地球Earth(10:OpenGL)
7【小沐学GIS】基于Python绘制三维数字地球Earth(11:OpenGL)
8【小沐学GIS】基于Android绘制三维数字地球Earth(12:OpenGL)
9【小沐学GIS】基于WebGL绘制三维数字地球Earth(13:OpenGL)

文章目录

  • 1、计算公式
  • 2、绘图接口
    • 2.1 glDrawArrays
    • 2.2 glDrawElements
  • 3、代码实现
  • 4、运行结果(3d整体地球)
    • 4.1 opengl / glut / c++ (3d)
    • 4.2 opengl / glfw / glad / stb_image / c++ (3d)
    • 4.3 opengl / glfw / glad / stb_image /c++ (3d,天空盒,高度贴图)
    • 4.4 opengl / win32/ glew / FreeImage / c++ (3d,大气层)
    • 4.5 opengl / freeglut / glew / FreeImage / c++ (3d,法线贴图)
    • 4.6 opengl / glfw / glad / stb_image / freetype / c++ (2d/3d,加载geojson)
    • 4.7 opengl / glfw / glad / FreeImage / c++ (3d,白天层/黑夜层/云层)
    • 4.8 opengl / glut / gl3w / c++ (3d,太阳系)
    • 4.9 opengl / glut / glew / glm / openssl / c++ (3d,在线地震数据显示)
    • 4.10 opengl / fltk / glew / curl / openssl / c++ / geojson (3d,在线地震数据显示2)
  • 5、运行结果(3d瓦片地球)
    • 5.1 opengl / glfw / glew / curl / proj4 / gdal / stb_image / c++ (3d,瓦片贴图)
    • 5.2 opengl / glfw / glad / boost::asio / proj4 / stb_image / c++ (3d,瓦片贴图)
  • 6、运行结果(2d瓦片地球)
    • 6.1 opengl / sdl / boost::asio / c++ (2d,瓦片贴图)
  • 结语

在这里插入图片描述

1、计算公式

球的三维坐标表示为:
x 2 + y 2 + z 2 = R 2 x^2 + y^2 + z^2 = R^2 x2+y2+z2=R2

引入球的参数坐标方程进行离散化。以(u,v)表示球面上某一点的坐标,且u,v的取值范围为[0 , 1],定义(u,v)到(x,y,z)的转换如下:

{ x = R × s i n ( π × v ) c o s ( 2 π × u ) y = R × s i n ( π × v ) s i n ( 2 π × u ) z = R × c o s ( π × v ) \begin{cases} x=R×sin(\pi×v)cos(2\pi×u) \\ y=R×sin(\pi×v)sin(2\pi×u) \\ z=R×cos(\pi×v) \end{cases} x=R×sin(π×v)cos(2π×u)y=R×sin(π×v)sin(2π×u)z=R×cos(π×v)

2、绘图接口

在OpenGL中,所有图形都是通过分解成三角形的方式进行绘制。
glDrawArrays 和 glDrawElements 的作用都是从一个数据数组中提取数据渲染基本图元。

在这里插入图片描述

  • GL_POINTS:把每一个顶点作为一个点进行处理,顶点n即定义了点n,共绘制N个点。
  • GL_LINES:连接每两个顶点作为一个独立的线段,顶点2n-1和2n之间共定义了n条线段,总共绘制N/2条线段。
  • GL_LINE_STRIP:绘制从第一个顶点到最后一个顶点依次相连的一组线段,第n和n+1个顶点定义了线段n,总共绘制n-1条线段。
  • GL_LINE_LOOP:绘制从第一个顶点到最后一个顶点依次相连的一组线段,然后最后一个顶点和第一个顶点相连,第n和n+1个顶点定义了线段n,总共绘制n条线段。
  • GL_TRIANGLES:把每三个顶点作为一个独立的三角形,顶点3n-2、3n-1和3n定义了第n个三角形,总共绘制N/3个三角形。
  • GL_TRIANGLE_STRIP:绘制一组相连的三角形,对于奇数n,顶点n、n+1和n+2定义了第n个三角形;对于偶数n,顶点n+1、n和n+2定义了第n个三角形,总共绘制N-2个三角形。
  • GL_TRIANGLE_FAN:绘制一组相连的三角形,三角形是由第一个顶点及其后给定的顶点确定,顶点1、n+1和n+2定义了第n个三角形,总共绘制N-2个三角形。

其中:
GL_TRIANGLES:V0V1V2, V3V4V5, V6V7V8……
GL_TRIANGLE_FAN:V0V1V2, V0V2V3, V0V3V4……
GL_TRIANGLE_STRIP:V0V1V2, V1V2V3, V2V3V4……

2.1 glDrawArrays

The glDrawArrays function specifies multiple primitives to render.

void WINAPI glDrawArrays(GLenum  mode,GLint   first,GLsizei count
);
mode:
GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON.first:
The starting index in the enabled arrays.count:
The number of indexes to render.

2.2 glDrawElements

The glDrawElements function renders primitives from array data.
The glDrawElements function is only available in OpenGL version 1.1 or later.

void WINAPI glDrawElements(GLenum  mode,GLsizei count,GLenum  type,const GLvoid  *indices
);
mode:
The kind of primitives to render. It can assume one of the following symbolic values: GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON.count:
The number of elements to be rendered.type:
The type of the values in indices. Must be one of GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, or GL_UNSIGNED_INT.indices:
A pointer to the location where the indices are stored.

绑定VAO时也会自动绑定EBO。
不要在解绑VAO之前解绑EBO(GL_ELEMENT_ARRAY_BUFFER)。

3、代码实现

#pragma once
#include "Point3d.h"
#include <vector>class EarthGrid3d
{
public:EarthGrid3d();void generalSphereGrid();void generalSphereLines();int _uStepsNum;int _vStepNum;float *_verticesArr;int _verticesNum;int *_indicesArr;int _indicesNum;float *_linesArr;int _linesNum;
};
#include "EarthGrid3d.h"EarthGrid3d::EarthGrid3d()
{_uStepsNum = 120;_vStepNum = 120;
}void EarthGrid3d::generalSphereGrid()
{double ustep = 1 / (double)_uStepsNum, vstep = 1 / (double)_vStepNum;int np = 0;int nf = 0;_verticesNum = (_vStepNum*_uStepsNum + 1)*(3 + 2);_verticesArr = new float[_verticesNum];_indicesNum = (_uStepsNum * 2 + _uStepsNum * 2 * (_vStepNum - 2)) * 3;_indicesArr = new int[_indicesNum];//// 北极的一个点{Point3d pt0 = getSpherePoint(0, 0);_verticesArr[5 * np] = pt0.x;_verticesArr[5 * np + 1] = pt0.y;_verticesArr[5 * np + 2] = pt0.z;_verticesArr[5 * np + 3] = 0.5;_verticesArr[5 * np + 4] = 0;np++;}// 中间的点for (int j = 1; j < _vStepNum; j++) //v-1个点(共v+1个点){for (int i = 0; i <= _uStepsNum; i++) //u+1个点 (共u+1个点){Point3d pt = getSpherePoint(ustep*i, vstep*j);_verticesArr[5 * np] = pt.x;_verticesArr[5 * np + 1] = pt.y;_verticesArr[5 * np + 2] = pt.z;_verticesArr[5 * np + 3] = 1 - ustep * i;_verticesArr[5 * np + 4] = vstep * j;np++;}}// 南极的一个点{Point3d pt1 = getSpherePoint(1, 1);_verticesArr[5 * np] = pt1.x;_verticesArr[5 * np + 1] = pt1.y;_verticesArr[5 * np + 2] = pt1.z;_verticesArr[5 * np + 3] = 0.5;_verticesArr[5 * np + 4] = 1;//np++;}//// 上下2行的三角形组for (int i = 0; i < _uStepsNum; i++) { //第一层u个三角形_indicesArr[nf++] = 0;_indicesArr[nf++] = 1 + i;_indicesArr[nf++] = 2 + i;//最后一层u个三角形_indicesArr[nf++] = np - 1;_indicesArr[nf++] = np - 2 - i;_indicesArr[nf++] = np - 3 - i;}// 中间的v-2行的三角形组for (int j = 0; j < _vStepNum - 2; j++) {  //共v-2行for (int i = 0; i < _uStepsNum; i++) { //共u列/**       |\*       | \*       |__\*/_indicesArr[nf++] = (_uStepsNum + 1)*j + 1 + i;_indicesArr[nf++] = (_uStepsNum + 1)*(j + 1) + 1 + i;_indicesArr[nf++] = (_uStepsNum + 1)*(j + 1) + 2 + i;/**       __*       \  |*        \ |*         \|*/_indicesArr[nf++] = (_uStepsNum + 1)*j + 1 + i;_indicesArr[nf++] = (_uStepsNum + 1)*(j + 1) + 2 + i;_indicesArr[nf++] = (_uStepsNum + 1)*j + 2 + i;}}
}void EarthGrid3d::generalSphereLines()
{double ustep = 1 / (double)_uStepsNum, vstep = 1 / (double)_vStepNum;int np = 0;_linesNum = (_vStepNum*_uStepsNum)*6;_linesArr = new float[_linesNum];// 绘制24条经线for (int i = 0; i < _uStepsNum; i+= _uStepsNum/24){for (int j = 0; j < _vStepNum; j++){Point3d pt = getSpherePoint(ustep*i, vstep*j, 1.01f);_linesArr[3 * np] = pt.x;_linesArr[3 * np + 1] = pt.y;_linesArr[3 * np + 2] = pt.z;np++;Point3d pt2 = getSpherePoint(ustep*i, vstep*(j+1), 1.01f);_linesArr[3 * np] = pt2.x;_linesArr[3 * np + 1] = pt2.y;_linesArr[3 * np + 2] = pt2.z;np++;}}// 绘制1条纬线(赤道)for (int i = 0; i < _uStepsNum; i++){int j = _vStepNum / 2;//for (int j = 0; j < _vStepNum; j++){Point3d pt = getSpherePoint(ustep*i, vstep*j, 1.01f);_linesArr[3 * np] = pt.x;_linesArr[3 * np + 1] = pt.y;_linesArr[3 * np + 2] = pt.z;np++;Point3d pt2 = getSpherePoint(ustep*(i+1), vstep*j, 1.01f);_linesArr[3 * np] = pt2.x;_linesArr[3 * np + 1] = pt2.y;_linesArr[3 * np + 2] = pt2.z;np++;}}
}

4、运行结果(3d整体地球)

4.1 opengl / glut / c++ (3d)

在这里插入图片描述

4.2 opengl / glfw / glad / stb_image / c++ (3d)

在这里插入图片描述

4.3 opengl / glfw / glad / stb_image /c++ (3d,天空盒,高度贴图)

在这里插入图片描述

4.4 opengl / win32/ glew / FreeImage / c++ (3d,大气层)

在这里插入图片描述

4.5 opengl / freeglut / glew / FreeImage / c++ (3d,法线贴图)

在这里插入图片描述

4.6 opengl / glfw / glad / stb_image / freetype / c++ (2d/3d,加载geojson)

在这里插入图片描述
在这里插入图片描述

4.7 opengl / glfw / glad / FreeImage / c++ (3d,白天层/黑夜层/云层)

在这里插入图片描述
在这里插入图片描述

4.8 opengl / glut / gl3w / c++ (3d,太阳系)

在这里插入图片描述

在这里插入图片描述

4.9 opengl / glut / glew / glm / openssl / c++ (3d,在线地震数据显示)

GeoJSON 是一种用于对各种地理数据结构进行编码的格式。 GeoJSON 对象可以表示几何、要素或 特征。GeoJSON 使用 JSON 标准。 GeoJSONP 源使用相同的 JSON 响应,但 GeoJSONP 响应 包装在函数调用中,eqfeed_callback。

  • 在线地震数据的请求结果json如下:
{type: "FeatureCollection",metadata: {generated: Long Integer,url: String,title: String,api: String,count: Integer,status: Integer},bbox: [minimum longitude,minimum latitude,minimum depth,maximum longitude,maximum latitude,maximum depth],features: [{type: "Feature",properties: {mag: Decimal,place: String,time: Long Integer,updated: Long Integer,tz: Integer,url: String,detail: String,felt:Integer,cdi: Decimal,mmi: Decimal,alert: String,status: String,tsunami: Integer,sig:Integer,net: String,code: String,ids: String,sources: String,types: String,nst: Integer,dmin: Decimal,rms: Decimal,gap: Decimal,magType: String,type: String},geometry: {type: "Point",coordinates: [longitude,latitude,depth]},id: String},…]
}

在这里插入图片描述
中国地震台网中心:
http://news.ceic.ac.cn/index.html?time=1674619089

  • 显示最近三天内的地震情况:
    在这里插入图片描述

  • 显示最近一个月内的地震情况:
    在这里插入图片描述

4.10 opengl / fltk / glew / curl / openssl / c++ / geojson (3d,在线地震数据显示2)

  • 显示最近小时内的地震情况:
    在这里插入图片描述
  • 显示最近一个月内的地震情况:
    在这里插入图片描述

5、运行结果(3d瓦片地球)

5.1 opengl / glfw / glew / curl / proj4 / gdal / stb_image / c++ (3d,瓦片贴图)

  • 加载卫星影像图
    在这里插入图片描述

  • 加载行政地图
    在这里插入图片描述

  • 加载shp(shapefile)文件和显示:
    在这里插入图片描述

  • 绘制自定义的图形元素(线、面等)
    在这里插入图片描述

  • 切换地球底图的瓦片图源

5.2 opengl / glfw / glad / boost::asio / proj4 / stb_image / c++ (3d,瓦片贴图)

在这里插入图片描述

6、运行结果(2d瓦片地球)

6.1 opengl / sdl / boost::asio / c++ (2d,瓦片贴图)

在这里插入图片描述

以上章节所有地球代码,均在VS2017开发环境编译通过。

结语

如果您觉得该方法或代码有一点点用处,可以给作者点个赞,或打赏杯咖啡;╮( ̄▽ ̄)╭
如果您感觉方法或代码不咋地//(ㄒoㄒ)//,就在评论处留言,作者继续改进;o_O???
如果您需要相关功能的代码定制化开发,可以留言私信作者;(✿◡‿◡)
感谢各位童鞋们的支持!( ´ ▽´ )ノ ( ´ ▽´)っ!!!

这篇关于【小沐学GIS】基于C++绘制三维数字地球Earth(OpenGL、glfw、glut)第一期的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810101

相关文章

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(