边界检测方法总结

2024-03-14 23:40
文章标签 总结 方法 边界检测

本文主要是介绍边界检测方法总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1:经典的边界检测方法有sobel,拉普拉斯,canny等。
sobel:

def get_sobel(in_chan, out_chan):filter_x = np.array([[1, 0, -1],[2, 0, -2],[1, 0, -1],]).astype(np.float32)filter_y = np.array([[1, 2, 1],[0, 0, 0],[-1, -2, -1],]).astype(np.float32)filter_x = filter_x.reshape((1, 1, 3, 3))filter_x = np.repeat(filter_x, in_chan, axis=1)filter_x = np.repeat(filter_x, out_chan, axis=0)filter_y = filter_y.reshape((1, 1, 3, 3))filter_y = np.repeat(filter_y, in_chan, axis=1)filter_y = np.repeat(filter_y, out_chan, axis=0)filter_x = torch.from_numpy(filter_x)filter_y = torch.from_numpy(filter_y)filter_x = nn.Parameter(filter_x, requires_grad=False)filter_y = nn.Parameter(filter_y, requires_grad=False)conv_x = nn.Conv2d(in_chan, out_chan, kernel_size=3, stride=1, padding=1, bias=False)conv_x.weight = filter_xconv_y = nn.Conv2d(in_chan, out_chan, kernel_size=3, stride=1, padding=1, bias=False)conv_y.weight = filter_ysobel_x = nn.Sequential(conv_x, nn.BatchNorm2d(out_chan))  # 自定义修改卷积核的权重sobel_y = nn.Sequential(conv_y, nn.BatchNorm2d(out_chan))return sobel_x, sobel_ydef run_sobel(conv_x, conv_y, input):g_x = conv_x(input)  # (1,1,15,20)g_y = conv_y(input)  # (1,1,15,20)g = torch.sqrt(torch.pow(g_x, 2) + torch.pow(g_y, 2) + 1e-6).clone()return g

拉普拉斯:

        self.laplacian_kernel = torch.tensor([-1, -1, -1, -1, 8, -1, -1, -1, -1],dtype=torch.float32).reshape(1, 1, 3, 3).requires_grad_(False).type(torch.cuda.FloatTensor)

在这里插入图片描述
2:《Holistically-nested edge detection》,HED经典的采用CNN进行边缘检测,通过边界损失进行约束。
论文地址
backbone的每一个输出后接一个side_output,输出通道为1,上采样到原图大小,GT进过提取边界后与上采样的side_output进行损失计算。
在这里插入图片描述
3:CASENet:CASENet: Deep Category-Aware Semantic Edge Detection
相比于多标签监督,CASENet采用了多类别即(category-aware)进行监督,考虑的是一个像素点可能同时属于多个类别,因此采用的不是one-hot编码,而是按RGB三通道的bit进行编码,在模型中前几个stage输出通道为1的边缘图,最后一个stage生成通道为num_class的特征图,然后通过slice_concat,将num_class的每一个通道与其他三个通道为1的特征图进行拼接,这样就有4num_class个通道,再经过融合层。
在这里插入图片描述
4:Gated-SCNN:Gated Shape CNNs for Semantic Segmentation
模型分为两条支路,regular stream和shape stream,shape stream只学习图像的shape信息,在shape分支通过edge bce loss进行约束,在regular通过segmentation loss进行约束。将第一个stage的输出,不断的和其他分支进行融合,最后输出通道为1的边界图,计算边界损失。和CASENet不同的是,每个side_output都不断地进行特征的交互。
在这里插入图片描述
5:基于
CASENet*的结构,有很多的应用,比如SwinNet,FusionNet,BES-Net等。
5.1:
在这里插入图片描述
5.2:BES-Net: Boundary Enhancing Semantic Context Network for High-Resolution Image Semantic Segmentation和Pixel Difference Networks for Efficient Edge Detection
在这里插入图片描述
在这里插入图片描述
6基于HED的有Pixel Difference Networks for Efficient Edge Detection,Boundary-Aware CNN for Semantic Segmentation

6.1:Pixel Difference Networks for Efficient Edge Detection:

在这里插入图片描述
6.2:Boundary-Aware CNN for Semantic Segmentation:depth和RGB首先经过一个子网络HED,生成的边界图通过平均池化不断下采样和RGB分支融合,其中还提出了Boundary-Aware卷积,类似于depth-aware卷积
在这里插入图片描述

7:基于Gated-SCNN的有
7.1:Multi-scale spatial context-based semantic edge detection,通过CAM提取,通过LAM融合,其中LAM结构和Gated-SCNN的Gate-layer几乎一样。
在这里插入图片描述
7.2:Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI:
因为他图片是医学的核磁共振图像,对于图片的性质和特点不太理解。他结合了sobel和卷积进行边缘的提取。
在这里插入图片描述
在这里插入图片描述
7.3:BASeg:也是两条分支,第二条分支开始是对RGB图进行Canny操作,然后和语义分支的每一个stage输出进行融合,最后和语义分支共同输入到CAM中,相当于边缘信息融合到语义信息中,使得最终的分割图可以有一个清晰的边缘。
在这里插入图片描述

这篇关于边界检测方法总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810093

相关文章

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP