【Python】科研代码学习:十二 PEFT(高效参数的训练,Adapter适配器)

本文主要是介绍【Python】科研代码学习:十二 PEFT(高效参数的训练,Adapter适配器),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Python】科研代码学习:十二 PEFT

  • PEFT
    • 简单训练教程
    • 简单推理教程
    • Adapter 适配器
    • Merge Adapter
  • 架构关系

PEFT

  • 【HF官网-Doc-PEFT:API】
    首先日常问题,是什么,为什么,怎么用
    PEFT (Prameter-Efficient Fine-Tuning):参数高效的微调
    这里特指 HF 提供的 PEFT
    PEFT 让大的预训练模型可以很快适应到各种下游的任务中,并且没有进行全参微调,因为全参微调的时间、算力花费比较大。

简单训练教程

  • 两个很重要的模块:
    PeftConfig :提供 peft 的配置
    PeftModel:提供 peft 的模型
  • 最常见的是使用 LoRA (Low-Rank Adaptation ) 作为 PEFT 技术
    这里,PeftConfig 就使用了 LoraConfig
    然后给了一些必要的参数,比如任务类型,设定模式(训练还是推理),低秩矩阵的秩,和lora的俩参数:
from peft import LoraConfig, TaskTypepeft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)
  • 然后,加载一个预训练模型
    接着,使用 get_peft_model,把模型和 peft_config 传进去,变成 peftmodel
    我们发现,这里只用训练 0.19 % 0.19\% 0.19% 的参数
from transformers import AutoModelForSeq2SeqLM
from peft import get_peft_modelmodel = AutoModelForSeq2SeqLM.from_pretrained("bigscience/mt0-large")model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
"output: trainable params: 2359296 || all params: 1231940608 || trainable%: 0.19151053100118282"
  • 然后直接提供 TrainingArgumentsTrainer 训练即可
training_args = TrainingArguments(output_dir="your-name/bigscience/mt0-large-lora",learning_rate=1e-3,per_device_train_batch_size=32,per_device_eval_batch_size=32,num_train_epochs=2,weight_decay=0.01,evaluation_strategy="epoch",save_strategy="epoch",load_best_model_at_end=True,
)trainer = Trainer(model=model,args=training_args,train_dataset=tokenized_datasets["train"],eval_dataset=tokenized_datasets["test"],tokenizer=tokenizer,data_collator=data_collator,compute_metrics=compute_metrics,
)trainer.train()	
  • 保存部分,跟一般的模型一样。但它只存储那些额外训练的参数,因此保存后的文件很小。
model.save_pretrained("output_dir")

简单推理教程

  • 我们加载 peftmodel 的话,需要使用比如 AutoPeftModel
    同理,使用 .from_pretrained 方法加载
    其他步骤没啥区别
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
import torchmodel = AutoPeftModelForCausalLM.from_pretrained("ybelkada/opt-350m-lora")
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")model = model.to("cuda")
model.eval()
inputs = tokenizer("Preheat the oven to 350 degrees and place the cookie dough", return_tensors="pt")outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=50)
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0])"Preheat the oven to 350 degrees and place the cookie dough in the center of the oven. In a large bowl, combine the flour, baking powder, baking soda, salt, and cinnamon. In a separate bowl, combine the egg yolks, sugar, and vanilla."

Adapter 适配器

  • Adapter-based 方法在冻结的注意力层和全连接层之后添加了额外的可训练参数
    这里简单介绍一下 PEFT 支持的几个 Adapter
  • LoRA (Low-Rank Adaptation):最受欢迎的一个PEFT方法
    主要是高秩到低秩的映射,然后再映射回高秩矩阵。
    一开始在NLP中,后来CV也有用
  • LoHa (Low-Rank Hadamard Product):使用了 Hadamard product 方法
    在CV中用,NLP中的嵌入层代码还没实现
  • LoKr (Low-Rankd Kronecker Product) :使用了 Kronecker Product 方法
    主要给 diffusion model 使用
    在这里插入图片描述
  • OFT (Orthogonal Finetuning):方法如下图
    一开始聚焦在微调阶段,预训练模型的生成能力
    在这里插入图片描述
  • Llama-Adapter:让 Llama 适配成接受指令模型 (instruction-following model)
    在这里插入图片描述
  • PEFT 库中,可以按照对应的模型和任务,选择想用的 Adapter
    不同的 Adapter 都有它自己的 SpecificPeftModelSpecificPeftConfig
    去查阅相关的参数即可。
    比较常用的有:
    IA3
    LoRA
    P-tuning
    Prefix tuning
    Prompt tuning
    在这里插入图片描述

Merge Adapter

  • 在实际过程中,由于基座模型和 adapter 适配器 分开加载,可能会遇到延迟问题
    这个时候,可以选择使用 merge_and_unload() 方法,把 adapter 权重与底座模型权重融合起来。这样的话,使用新的模型就和一开始单独的模型没有区别了。
  • 比如我使用的是 LoraAdapter,查阅该方法
    progressbar :是否显示进度条
    safe_merge:使用安全合并,检查适配器中是否有 Nan 权重
    adapter_names:要合并的适配器名字的列表
    在这里插入图片描述
  • 当然这些参数都可以用默认值。我们只要对 PeftModel 调用该方法即可返回合并后的 model 。
from transformers import AutoModelForCausalLM
from peft import PeftModelbase_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b")
peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample"
model = PeftModel.from_pretrained(base_model, peft_model_id)
merged_model = model.merge_and_unload()

架构关系

  • 粗看上面关系有点乱,还是得看一下源码
    PeftModel 是从 torch.nn 继承过来的,按照不同的任务,使用不同的子类,比如 PeftModelForCausalLM
    LoRAModel 等,是从 BaseTuner 继承过来的,Tuner 也是继承自 torch.nn,但这个是按照使用不同的适配器分类的,并且它建议是使用 LoRAConfig,这个是 PeftConfig 的子类
  • PeftModel 更靠近 PretrainedModel,有 save_pretrained, from_pretrained 等方法。PeftModelForCausalLM 还有 generate 方法
    LoRAModel 更靠近 Adapter,有 merge_and_unload, delete_adapter 等方法
  • 它里面大部分的基类和使用到的网络几乎都是 torch.nn,因此大部分跟 PretrainedModel 可以接壤
  • 即根据我的查询,LoRAModel 等并不是 PeftModelForCausalLM / PeftModel 的子类(有待存疑)
    LoRAModel 来训练,PeftModel 来推理,是可以的。
    并且 LoRAModel 可以通过 merge_and_unload() 方法转成 torch.nn,也就相当于 PretrainedModel
    在这里插入图片描述

这篇关于【Python】科研代码学习:十二 PEFT(高效参数的训练,Adapter适配器)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/809726

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚