吴恩达机器学习-可选的实验室-正则化成本和梯度(Regularized Cost and Gradient)

本文主要是介绍吴恩达机器学习-可选的实验室-正则化成本和梯度(Regularized Cost and Gradient),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 目标
    • 添加正则化
    • 正则化代价函数
    • 正则化梯度下降
    • 重新运行过拟合示例
    • 恭喜

目标

在本实验中,你将:

  • 用正则化项扩展前面的线性和逻辑代价函数。
  • 重新运行前面添加正则化项的过拟合示例。
import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from plt_overfit import overfit_example, output
from lab_utils_common import sigmoid
np.set_printoptions(precision=8)

添加正则化

在这里插入图片描述
在这里插入图片描述
上面的幻灯片显示了线性回归和逻辑回归的成本和梯度函数。注意:

  • 成本
    • 线性回归和逻辑回归的成本函数有很大不同,但对方程进行正则化是相同的。
  • 梯度
    • 线性回归和逻辑回归的梯度函数非常相似。它们只是在实现Fwb方面有所不同

正则化代价函数

正则化线性回归的代价函数
代价函数正则化线性回归方程为:
在这里插入图片描述
将此与没有正则化的成本函数(您在之前的实验室中实现)进行比较,其形式为:
在这里插入图片描述
包括这一项激励梯度下降以最小化参数的大小。注意,在这个例子中,参数b没有被正则化。这是标准做法。下面是方程(1)和(2)的实现。注意,这使用了本课程的标准模式,对所有m个例子进行for循环。

def compute_cost_linear_reg(X, y, w, b, lambda_ = 1):"""Computes the cost over all examplesArgs:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters  b (scalar)      : model parameterlambda_ (scalar): Controls amount of regularizationReturns:total_cost (scalar):  cost """m  = X.shape[0]n  = len(w)cost = 0.for i in range(m):f_wb_i = np.dot(X[i], w) + b                                   #(n,)(n,)=scalar, see np.dotcost = cost + (f_wb_i - y[i])**2                               #scalar             cost = cost / (2 * m)                                              #scalar  reg_cost = 0for j in range(n):reg_cost += (w[j]**2)                                          #scalarreg_cost = (lambda_/(2*m)) * reg_cost                              #scalartotal_cost = cost + reg_cost                                       #scalarreturn total_cost                                                  #scalar

运行下面的单元格,看看它是如何工作的。

np.random.seed(1)
X_tmp = np.random.rand(5,6)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1]).reshape(-1,)-0.5
b_tmp = 0.5
lambda_tmp = 0.7
cost_tmp = compute_cost_linear_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print("Regularized cost:", cost_tmp)

在这里插入图片描述
正则化逻辑回归的代价函数
对于正则化逻辑回归,成本函数为
在这里插入图片描述
将此与没有正则化的成本函数(在之前的实验室中实现)进行比较:在这里插入图片描述
和上面的线性回归一样,区别在于正则化项,也就是
在这里插入图片描述
包括这一项激励梯度下降以最小化参数的大小。请注意。在这个例子中,参数b没有经过正则化。这是标准做法。

def compute_cost_logistic_reg(X, y, w, b, lambda_ = 1):"""Computes the cost over all examplesArgs:Args:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters  b (scalar)      : model parameterlambda_ (scalar): Controls amount of regularizationReturns:total_cost (scalar):  cost """m,n  = X.shapecost = 0.for i in range(m):z_i = np.dot(X[i], w) + b                                      #(n,)(n,)=scalar, see np.dotf_wb_i = sigmoid(z_i)                                          #scalarcost +=  -y[i]*np.log(f_wb_i) - (1-y[i])*np.log(1-f_wb_i)      #scalarcost = cost/m                                                      #scalarreg_cost = 0for j in range(n):reg_cost += (w[j]**2)                                          #scalarreg_cost = (lambda_/(2*m)) * reg_cost                              #scalartotal_cost = cost + reg_cost                                       #scalarreturn total_cost                                                  #scalar

运行下面的单元格,看看它是如何工作的。

np.random.seed(1)
X_tmp = np.random.rand(5,6)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1]).reshape(-1,)-0.5
b_tmp = 0.5
lambda_tmp = 0.7
cost_tmp = compute_cost_logistic_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print("Regularized cost:", cost_tmp)

在这里插入图片描述

正则化梯度下降

运行梯度下降的基本算法不随正则化而改变,为:
在这里插入图片描述

其中每次迭代对w执行同步更新。正则化改变的是计算梯度
用正则化计算梯度(线性/逻辑)
线性回归和逻辑回归的梯度计算几乎是相同的,不同的只是fwb的计算
在这里插入图片描述
正则化线性回归的梯度函数

def compute_gradient_linear_reg(X, y, w, b, lambda_): """Computes the gradient for linear regression Args:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters  b (scalar)      : model parameterlambda_ (scalar): Controls amount of regularizationReturns:dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w. dj_db (scalar):       The gradient of the cost w.r.t. the parameter b. """m,n = X.shape           #(number of examples, number of features)dj_dw = np.zeros((n,))dj_db = 0.for i in range(m):                             err = (np.dot(X[i], w) + b) - y[i]                 for j in range(n):                         dj_dw[j] = dj_dw[j] + err * X[i, j]               dj_db = dj_db + err                        dj_dw = dj_dw / m                                dj_db = dj_db / m   for j in range(n):dj_dw[j] = dj_dw[j] + (lambda_/m) * w[j]return dj_db, dj_dw

运行下面的单元格,看看它是如何工作的。

np.random.seed(1)
X_tmp = np.random.rand(5,3)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1])
b_tmp = 0.5
lambda_tmp = 0.7
dj_db_tmp, dj_dw_tmp =  compute_gradient_linear_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print(f"dj_db: {dj_db_tmp}", )
print(f"Regularized dj_dw:\n {dj_dw_tmp.tolist()}", )

在这里插入图片描述
正则化逻辑回归的梯度函数

def compute_gradient_logistic_reg(X, y, w, b, lambda_): """Computes the gradient for linear regression Args:X (ndarray (m,n): Data, m examples with n featuresy (ndarray (m,)): target valuesw (ndarray (n,)): model parameters  b (scalar)      : model parameterlambda_ (scalar): Controls amount of regularizationReturnsdj_dw (ndarray Shape (n,)): The gradient of the cost w.r.t. the parameters w. dj_db (scalar)            : The gradient of the cost w.r.t. the parameter b. """m,n = X.shapedj_dw = np.zeros((n,))                            #(n,)dj_db = 0.0                                       #scalarfor i in range(m):f_wb_i = sigmoid(np.dot(X[i],w) + b)          #(n,)(n,)=scalarerr_i  = f_wb_i  - y[i]                       #scalarfor j in range(n):dj_dw[j] = dj_dw[j] + err_i * X[i,j]      #scalardj_db = dj_db + err_idj_dw = dj_dw/m                                   #(n,)dj_db = dj_db/m                                   #scalarfor j in range(n):dj_dw[j] = dj_dw[j] + (lambda_/m) * w[j]return dj_db, dj_dw  

运行下面的单元格,看看它是如何工作的。

np.random.seed(1)
X_tmp = np.random.rand(5,3)
y_tmp = np.array([0,1,0,1,0])
w_tmp = np.random.rand(X_tmp.shape[1])
b_tmp = 0.5
lambda_tmp = 0.7
dj_db_tmp, dj_dw_tmp =  compute_gradient_logistic_reg(X_tmp, y_tmp, w_tmp, b_tmp, lambda_tmp)print(f"dj_db: {dj_db_tmp}", )
print(f"Regularized dj_dw:\n {dj_dw_tmp.tolist()}", )

在这里插入图片描述

重新运行过拟合示例

plt.close("all")
display(output)
ofit = overfit_example(True)

没拟合前如下所示(红色虚线是理想拟合曲线):
分类
在这里插入图片描述
回归
在这里插入图片描述

在上面的图表中,在前面的例子中尝试正则化。特别是:分类(逻辑回归)设置度为6,lambda为0(不正则化),拟合数据现在将lambda设置为1(增加正则化),拟合数据,注意差异。回归(线性回归)尝试同样的步骤。
分类
度为6,lambda为0(不正则化)如下:在这里插入图片描述

度为6,lambda为1(正则化)如下:
在这里插入图片描述
回归
度为6,lambda为0(不正则化)如下:
在这里插入图片描述
度为6,lambda为1(正则化)如下:
在这里插入图片描述

恭喜

你有:成本和梯度例程的例子与回归添加了线性和逻辑回归对正则化如何减少过度拟合产生了一些直觉

这篇关于吴恩达机器学习-可选的实验室-正则化成本和梯度(Regularized Cost and Gradient)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808094

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

css渐变色背景|<gradient示例详解

《css渐变色背景|<gradient示例详解》CSS渐变是一种从一种颜色平滑过渡到另一种颜色的效果,可以作为元素的背景,它包括线性渐变、径向渐变和锥形渐变,本文介绍css渐变色背景|<gradien... 使用渐变色作为背景可以直接将渐China编程变色用作元素的背景,可以看做是一种特殊的背景图片。(是作为背