C# RAM Stable Diffusion 提示词反推 Onnx Demo

2024-03-14 08:52

本文主要是介绍C# RAM Stable Diffusion 提示词反推 Onnx Demo,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

介绍

效果

模型信息

项目

代码

下载


C# RAM Stable Diffusion 提示词反推 Onnx Demo

介绍

github地址:GitHub - xinyu1205/recognize-anything: Open-source and strong foundation image recognition models.

Open-source and strong foundation image recognition models.

效果

模型信息

Model Properties
-------------------------
---------------------------------------------------------------

Inputs
-------------------------
name:input
tensor:Float[1, 3, 384, 384]
---------------------------------------------------------------

Outputs
-------------------------
name:output
tensor:Float[1, 4585]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        StringBuilder sbTags = new StringBuilder();
        StringBuilder sbTagsCN = new StringBuilder();
        StringBuilder sb = new StringBuilder();

        public string[] class_names;

        List<Tag> ltTag = new List<Tag>();

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
        }

        float[] mean = { 0.485f, 0.456f, 0.406f };
        float[] std = { 0.229f, 0.224f, 0.225f };

        public void Normalize(Mat src)
        {
            src.ConvertTo(src, MatType.CV_32FC3, 1.0 / 255);
            Mat[] bgr = src.Split();
            for (int i = 0; i < bgr.Length; ++i)
            {
                bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1 / std[i], (0.0 - mean[i]) / std[i]);
            }
            Cv2.Merge(bgr, src);
            foreach (Mat channel in bgr)
            {
                channel.Dispose();
            }
        }

        public float[] ExtractMat(Mat src)
        {
            OpenCvSharp.Size size = src.Size();
            int channels = src.Channels();
            float[] result = new float[size.Width * size.Height * channels];
            GCHandle resultHandle = default;
            try
            {
                resultHandle = GCHandle.Alloc(result, GCHandleType.Pinned);
                IntPtr resultPtr = resultHandle.AddrOfPinnedObject();
                for (int i = 0; i < channels; ++i)
                {
                    Mat cmat = new Mat(
                       src.Height, src.Width,
                       MatType.CV_32FC1,
                       resultPtr + i * size.Width * size.Height * sizeof(float));

                    Cv2.ExtractChannel(src, cmat, i);
                    cmat.Dispose();
                }
            }
            finally
            {
                resultHandle.Free();
            }
            return result;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            textBox1.Text = "";
            sb.Clear();
            sbTagsCN.Clear();
            sbTags.Clear();
            Application.DoEvents();

            image = new Mat(image_path);

            //图片缩放
            Mat resize_image = new Mat();
            Cv2.Resize(image, resize_image, new OpenCvSharp.Size(384, 384));

            Normalize(resize_image);

            var data = ExtractMat(resize_image);

            resize_image.Dispose();
            image.Dispose();

            // 输入Tensor
            input_tensor = new DenseTensor<float>(data, new[] { 1, 3, 384, 384 });

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            var result_array = result_tensors.ToArray();

            double[] scores = new double[result_array.Length];
            for (int i = 0; i < result_array.Length; i++)
            {
                double score = 1 / (1 + Math.Exp(result_array[i] * -1));
                scores[i] = score;
            }
            List<Tag> tags = new List<Tag>(ltTag);

            List<Tag> topTags = new List<Tag>();
            for (int i = 0; i < scores.Length; i++)
            {
                if (scores[i] > tags[i].Threshold)
                {
                    tags[i].Score = scores[i];
                    topTags.Add(tags[i]);
                }
            }
            topTags.OrderByDescending(x => x.Score).ToList();

            foreach (var item in topTags)
            {
                sbTagsCN.Append(item.NameCN + ",");
                sbTags.Append(item.Name + ",");
            }
            sbTagsCN.Length--;
            sbTags.Length--;

            sb.AppendLine("Tags:" + sbTags.ToString());
            sb.AppendLine("标签:" + sbTagsCN.ToString());
            sb.AppendLine("------------------");
            sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
            textBox1.Text = sb.ToString();
            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            model_path = "model/ram.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

            string[] thresholdLines = File.ReadAllLines("model/ram_tag_list_threshold.txt");
            string[] tagChineseLines = File.ReadAllLines("model/ram_tag_list_chinese.txt");
            string[] tagLines = File.ReadAllLines("model/ram_tag_list.txt");

            for (int i = 0; i < tagLines.Length; i++)
            {
                ltTag.Add(new Tag { NameCN = tagChineseLines[i], Name = tagLines[i], Threshold = double.Parse(thresholdLines[i]) });
            }
        }

    }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using System.Windows.Forms;namespace Onnx_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;StringBuilder sbTags = new StringBuilder();StringBuilder sbTagsCN = new StringBuilder();StringBuilder sb = new StringBuilder();public string[] class_names;List<Tag> ltTag = new List<Tag>();private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);}float[] mean = { 0.485f, 0.456f, 0.406f };float[] std = { 0.229f, 0.224f, 0.225f };public void Normalize(Mat src){src.ConvertTo(src, MatType.CV_32FC3, 1.0 / 255);Mat[] bgr = src.Split();for (int i = 0; i < bgr.Length; ++i){bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1 / std[i], (0.0 - mean[i]) / std[i]);}Cv2.Merge(bgr, src);foreach (Mat channel in bgr){channel.Dispose();}}public float[] ExtractMat(Mat src){OpenCvSharp.Size size = src.Size();int channels = src.Channels();float[] result = new float[size.Width * size.Height * channels];GCHandle resultHandle = default;try{resultHandle = GCHandle.Alloc(result, GCHandleType.Pinned);IntPtr resultPtr = resultHandle.AddrOfPinnedObject();for (int i = 0; i < channels; ++i){Mat cmat = new Mat(src.Height, src.Width,MatType.CV_32FC1,resultPtr + i * size.Width * size.Height * sizeof(float));Cv2.ExtractChannel(src, cmat, i);cmat.Dispose();}}finally{resultHandle.Free();}return result;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}button2.Enabled = false;textBox1.Text = "";sb.Clear();sbTagsCN.Clear();sbTags.Clear();Application.DoEvents();image = new Mat(image_path);//图片缩放Mat resize_image = new Mat();Cv2.Resize(image, resize_image, new OpenCvSharp.Size(384, 384));Normalize(resize_image);var data = ExtractMat(resize_image);resize_image.Dispose();image.Dispose();// 输入Tensorinput_tensor = new DenseTensor<float>(data, new[] { 1, 3, 384, 384 });//将 input_tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("input", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();var result_array = result_tensors.ToArray();double[] scores = new double[result_array.Length];for (int i = 0; i < result_array.Length; i++){double score = 1 / (1 + Math.Exp(result_array[i] * -1));scores[i] = score;}List<Tag> tags = new List<Tag>(ltTag);List<Tag> topTags = new List<Tag>();for (int i = 0; i < scores.Length; i++){if (scores[i] > tags[i].Threshold){tags[i].Score = scores[i];topTags.Add(tags[i]);}}topTags.OrderByDescending(x => x.Score).ToList();foreach (var item in topTags){sbTagsCN.Append(item.NameCN + ",");sbTags.Append(item.Name + ",");}sbTagsCN.Length--;sbTags.Length--;sb.AppendLine("Tags:" + sbTags.ToString());sb.AppendLine("标签:" + sbTagsCN.ToString());sb.AppendLine("------------------");sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");textBox1.Text = sb.ToString();button2.Enabled = true;}private void Form1_Load(object sender, EventArgs e){model_path = "model/ram.onnx";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 创建输入容器input_container = new List<NamedOnnxValue>();image_path = "test_img/1.jpg";pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);string[] thresholdLines = File.ReadAllLines("model/ram_tag_list_threshold.txt");string[] tagChineseLines = File.ReadAllLines("model/ram_tag_list_chinese.txt");string[] tagLines = File.ReadAllLines("model/ram_tag_list.txt");for (int i = 0; i < tagLines.Length; i++){ltTag.Add(new Tag { NameCN = tagChineseLines[i], Name = tagLines[i], Threshold = double.Parse(thresholdLines[i]) });}}}
}

下载

源码下载(带模型)

模型下载

这篇关于C# RAM Stable Diffusion 提示词反推 Onnx Demo的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/807885

相关文章

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

C#下Newtonsoft.Json的具体使用

《C#下Newtonsoft.Json的具体使用》Newtonsoft.Json是一个非常流行的C#JSON序列化和反序列化库,它可以方便地将C#对象转换为JSON格式,或者将JSON数据解析为C#对... 目录安装 Newtonsoft.json基本用法1. 序列化 C# 对象为 JSON2. 反序列化

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

C#和Unity中的中介者模式使用方式

《C#和Unity中的中介者模式使用方式》中介者模式通过中介者封装对象交互,降低耦合度,集中控制逻辑,适用于复杂系统组件交互场景,C#中可用事件、委托或MediatR实现,提升可维护性与灵活性... 目录C#中的中介者模式详解一、中介者模式的基本概念1. 定义2. 组成要素3. 模式结构二、中介者模式的特点

C#中SortedSet的具体使用

《C#中SortedSet的具体使用》SortedSet是.NETFramework4.0引入的一个泛型集合类,它实现了一个自动排序的集合,内部使用红黑树数据结构来维护元素的有序性,下面就来介绍一下如... 目录基础概念主要特性创建和初始化基本创建方式自定义比较器基本操作添加和删除元素查询操作范围查询集合运