YOLOv8改进 | 图像去雾 | 特征融合注意网络FFA-Net增强YOLOv8对于模糊图片检测能力(北大和北航联合提出)

本文主要是介绍YOLOv8改进 | 图像去雾 | 特征融合注意网络FFA-Net增强YOLOv8对于模糊图片检测能力(北大和北航联合提出),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、本文介绍

本文给大家带来的改进机制是由北大和北航联合提出的FFA-net: Feature Fusion Attention Network for Single Image Dehazing图像增强去雾网络,该网络的主要思想是利用特征融合注意力网络(Feature Fusion Attention Network)直接恢复无雾图像,FFA-Net通过特征注意力机制和特征融合注意力结构的创新设计,有效地提升了单图像去雾技术的性能。通过巧妙地结合通道和像素注意力,以及局部残差学习,网络能够更加精准地处理不同区域的雾霾,实现了在细节保留和色彩保真度上的显著提升。

 欢迎大家订阅我的专栏一起学习YOLO! 

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

目录

一、本文介绍

二、原理介绍 

三、核心代码 

 四、添加方式教程

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、yaml文件和运行记录

5.1 yaml文件1

5.2 训练代码 

5.3 训练过程截图 

五、本文总结


二、原理介绍 

官方论文地址: 官方论文地址点击此处即可跳转

官方代码地址: 官方代码地址点击此处即可跳转


FFA-Net的主要思想是利用特征融合注意力网络(Feature Fusion Attention Network)直接恢复无雾图像。这种架构通过三个关键组件实现高效的图像去雾效果:

1. 特征注意力(Feature Attention, FA)模块:结合通道注意力(Channel Attention)和像素注意力(Pixel Attention)机制,因为不同通道的特征包含完全不同的加权信息,且雾的分布在不同的图像像素上是不均匀的。FA通过不平等地对待不同的特征和像素,提供了处理不同信息类型的额外灵活性,从而扩展了卷积神经网络的表示能力。

2. 基本块结构:包含局部残差学习(Local Residual Learning)和特征注意力。局部残差学习允许如轻雾区域或低频等不那么重要的信息通过多个局部残差连接被绕过,使主网络架构可以专注于更有效的信息。

3. 基于注意力的不同级别特征融合(FFA)结构:通过特征注意力(FA)模块自适应学习的特征权重,给予重要特征更多的权重。这种结构还可以保留浅层的信息,并将其传递到深层。

个人总结:
FFA-Net通过特征注意力机制和特征融合注意力结构的创新设计,有效地提升了单图像去雾技术的性能。通过巧妙地结合通道和像素注意力,以及局部残差学习,网络能够更加精准地处理不同区域的雾霾,实现了在细节保留和色彩保真度上的显著提升。


三、核心代码 

 核心代码的使用方式看章节四!

import torch.nn as nn
import torchdef default_conv(in_channels, out_channels, kernel_size, bias=True):return nn.Conv2d(in_channels, out_channels, kernel_size, padding=(kernel_size // 2), bias=bias)class PALayer(nn.Module):def __init__(self, channel):super(PALayer, self).__init__()self.pa = nn.Sequential(nn.Conv2d(channel, channel // 8, 1, padding=0, bias=True),nn.ReLU(inplace=True),nn.Conv2d(channel // 8, 1, 1, padding=0, bias=True),nn.Sigmoid())def forward(self, x):y = self.pa(x)return x * yclass CALayer(nn.Module):def __init__(self, channel):super(CALayer, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.ca = nn.Sequential(nn.Conv2d(channel, channel // 8, 1, padding=0, bias=True),nn.ReLU(inplace=True),nn.Conv2d(channel // 8, channel, 1, padding=0, bias=True),nn.Sigmoid())def forward(self, x):y = self.avg_pool(x)y = self.ca(y)return x * yclass Block(nn.Module):def __init__(self, conv, dim, kernel_size, ):super(Block, self).__init__()self.conv1 = conv(dim, dim, kernel_size, bias=True)self.act1 = nn.ReLU(inplace=True)self.conv2 = conv(dim, dim, kernel_size, bias=True)self.calayer = CALayer(dim)self.palayer = PALayer(dim)def forward(self, x):res = self.act1(self.conv1(x))res = res + xres = self.conv2(res)res = self.calayer(res)res = self.palayer(res)res += xreturn resclass Group(nn.Module):def __init__(self, conv, dim, kernel_size, blocks):super(Group, self).__init__()modules = [Block(conv, dim, kernel_size) for _ in range(blocks)]modules.append(conv(dim, dim, kernel_size))self.gp = nn.Sequential(*modules)def forward(self, x):res = self.gp(x)res += xreturn resclass FFA(nn.Module):def __init__(self, gps=3, blocks=1, conv=default_conv):super(FFA, self).__init__()self.gps = gpsself.dim = 8kernel_size = 3pre_process = [conv(3, self.dim, kernel_size)]assert self.gps == 3self.g1 = Group(conv, self.dim, kernel_size, blocks=blocks)self.g2 = Group(conv, self.dim, kernel_size, blocks=blocks)self.g3 = Group(conv, self.dim, kernel_size, blocks=blocks)self.ca = nn.Sequential(*[nn.AdaptiveAvgPool2d(1),nn.Conv2d(self.dim * self.gps, self.dim // 4, 1, padding=0),nn.ReLU(inplace=True),nn.Conv2d(self.dim // 4, self.dim * self.gps, 1, padding=0, bias=True),nn.Sigmoid()])self.palayer = PALayer(self.dim)post_precess = [conv(self.dim, self.dim, kernel_size),conv(self.dim, 3, kernel_size)]self.pre = nn.Sequential(*pre_process)self.post = nn.Sequential(*post_precess)def forward(self, x1):x = self.pre(x1)res1 = self.g1(x)res2 = self.g2(res1)res3 = self.g3(res2)w = self.ca(torch.cat([res1, res2, res3], dim=1))w = w.view(-1, self.gps, self.dim)[:, :, :, None, None]out = w[:, 0, ::] * res1 + w[:, 1, ::] * res2 + w[:, 2, ::] * res3out = self.palayer(out)x = self.post(out)return x + x1if __name__ == "__main__":image_size = (1, 3, 640, 640)image = torch.rand(*image_size)net = FFA(gps=3, blocks=1)out = net(image)print(out.size())

 四、添加方式教程

4.1 修改一

第一还是建立文件,我们找到如下ultralytics/nn/modules文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.4 修改四 

按照我的添加在parse_model里添加即可。

到此就修改完成了,大家可以复制下面的yaml文件运行。


五、yaml文件和运行记录

5.1 yaml文件1

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, FFA, []]  # 0-P1/2- [-1, 1, Conv, [64, 3, 2]]  # 1-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 2-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 4-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 6-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 8-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 10# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 7], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 13- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 5], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 22 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)


5.2 训练代码 

大家可以创建一个py文件将我给的代码复制粘贴进去,配置好自己的文件路径即可运行。

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/yolov8-C2f-FasterBlock.yaml')# model.load('yolov8n.pt') # loading pretrain weightsmodel.train(data=r'替换数据集yaml文件地址',# 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, posecache=False,imgsz=640,epochs=150,single_cls=False,  # 是否是单类别检测batch=4,close_mosaic=10,workers=0,device='0',optimizer='SGD', # using SGD# resume='', # 如过想续训就设置last.pt的地址amp=False,  # 如果出现训练损失为Nan可以关闭ampproject='runs/train',name='exp',)


5.3 训练过程截图 


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制 

这篇关于YOLOv8改进 | 图像去雾 | 特征融合注意网络FFA-Net增强YOLOv8对于模糊图片检测能力(北大和北航联合提出)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/807494

相关文章

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Python开发简易网络服务器的示例详解(新手入门)

《Python开发简易网络服务器的示例详解(新手入门)》网络服务器是互联网基础设施的核心组件,它本质上是一个持续运行的程序,负责监听特定端口,本文将使用Python开发一个简单的网络服务器,感兴趣的小... 目录网络服务器基础概念python内置服务器模块1. HTTP服务器模块2. Socket服务器模块

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据