生存预后不显著?最佳阈值来帮你!| 附完整代码 + 注释

2024-03-14 00:28

本文主要是介绍生存预后不显著?最佳阈值来帮你!| 附完整代码 + 注释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家在进行生存预后分析时发现结果不显著,是不是当头一棒!两眼一黑!难不成这就代表我们的研究没意义吗?NONONO!别慌!说不定还有救!快来看看最佳阈值能不能捞你一把!

对生存分析感兴趣的小伙伴可以查看:看完不会来揍我 | 生存分析详解 | 从基础概念到生存曲线绘制 | 代码注释 + 结果解读

生存分析不显著怎么办

通常情况下,为了确定一个二分变量(例如基因表达高/低)的最佳阈值,我们可能会使用中位数作为阈值,将样本分为两组,然后对生存曲线进行比较。但有时候使用中位数作为阈值可能并不足以找到显著的差异,这时可以考虑使用最佳阈值方法来寻找更加适合的阈值。来!咱们今天就一起去xio习一下!

老规矩!本文所用到的数据和代码,我已经上传到了GitHub,有需要的话,大家可以在公众号后台回复最佳阈值即可获得存放数据的链接,很多需要注意的问题也会在代码注释中进行详细说明。不过我在分享过程中也会把每一步的输入数据和输出结果进行展示,大家可以作为参考并调整自己的数据格式,然后直接用自己的数据跑,也是没有任何问题的!

# 生存预后不显著?最佳阈值来帮你!# 加载包,没安装的记得安装一下哟!
library(survival)
library(survminer)# 加载数据
best_threshold_data <- read.csv("./best_threshold_data.csv")
head(best_threshold_data)
#            sample risk_score OS OS.time
# 1 TCGA-06-0878-01   2.538694  0     218
# 2 TCGA-26-5135-01   3.736050  1     270
# 3 TCGA-06-5859-01   3.701219  0     139
# 4 TCGA-06-2563-01   3.318001  0     932
# 5 TCGA-41-2571-01   5.102783  1      26
# 6 TCGA-28-5207-01   6.899652  1     343# 数据包含了四列:样本名称(sample)、风险评分(risk_score)、生存状态(OS)和生存时间(OS.time)。# 使用中位数作为阈值来将样本分为高风险组和低风险组
# 如果风险评分大于等于中位数,则标记为"High Risk",否则标记为"Low Risk"
best_threshold_data$group <- ifelse(best_threshold_data$risk_score >= median(best_threshold_data$risk_score), "High Risk", "Low Risk")# 创建生存对象(Surv对象),包含生存时间和生存状态信息
surv_obj <- Surv(time = best_threshold_data$OS.time, event = best_threshold_data$OS)# 使用survfit()函数拟合生存曲线
surv_fit <- survfit(surv_obj ~ best_threshold_data$group)# 绘制生存曲线
ggsurvplot(surv_fit, data = best_threshold_data, surv.median.line = "hv",pval = TRUE,  # 显示p值xlab = "Time (days)", ylab = "Survival Probability",  # x轴和y轴标签legend.title = "",  # 图例标题为空break.x.by = 1000,  # x轴刻度间隔color = "strata",  # 根据分组着色palette = c("#bc5148", "#3090a1"))  # 自定义颜色

哎!最恶毒的诅咒莫过于“祝你P > 0.05”!!!这不显著可咋整,咱这分析不就没意义了嘛!

且慢!我们的救兵来啦!下面请欣赏它的表演!

最佳阈值选择

目前比较常见的方法有:

  • 使用survminer包中的surv_cutpoint函数实现
  • 使用cutoff包中的logrank函数实现
  • 基于X-Tile软件实现

下面,咱们就挨个介绍!

survminer包的surv_cutpoint函数

# survminer包的surv_cutpoint函数
# 使用survminer包的surv_cutpoint函数来寻找最佳阈值
best_threshold_surv <- surv_cutpoint(best_threshold_data,time = "OS.time",  # 生存时间列名event = "OS",      # 生存事件列名variables = "risk_score",  # 需要寻找阈值的变量列名minprop = 0.3,     # 最小比例,防止找到的阈值过于极端progressbar = TRUE)  # 显示进度条# 查看找到的最佳阈值的摘要统计信息
summary(best_threshold_surv)
#            cutpoint statistic
# risk_score 4.420631  1.748393# 我们这里只计算了一个变量的最佳阈值,还可以计算多个变量的最佳阈值,只需将`variables`参数设为`c("变量1, "变量2", "变量3")`。# 根据找到的最佳阈值对数据进行分组
best_threshold_data <- surv_categorize(best_threshold_surv)# 创建生存对象(Surv对象),包含生存时间和生存状态信息
surv_obj <- Surv(time = best_threshold_data$OS.time, event = best_threshold_data$OS)# 使用survfit()函数拟合生存曲线
surv_fit <- survfit(surv_obj ~ best_threshold_data$risk_score)# 绘制生存曲线
ggsurvplot(surv_fit, data = best_threshold_data, surv.median.line = "hv",pval = TRUE,                    # 显示p值xlab = "Time (days)", ylab = "Survival Probability",  # x轴和y轴标签legend.title = "",             # 图例标题为空break.x.by = 1000,             # x轴刻度间隔color = "strata",              # 根据分组着色palette = c("#bc5148", "#3090a1"))  # 自定义颜色

是不是比上面显著多啦!

cutoff包的logrank函数

# cutoff包的logrank函数# 重新加载数据
best_threshold_data <- read.csv("./best_threshold_data.csv")# 加载cutoff包
library(cutoff)# 使用cutoff包的logrank函数来寻找最佳阈值
best_threshold_surv_2 <- logrank(data = best_threshold_data,time = "OS.time",  # 生存时间列名y = "OS",          # 生存事件列名x = "risk_score",  # 需要寻找阈值的变量列名cut.numb = 1,      # 截点个数n.per = 0.2,       # 分组后每组样本量占总样本量的最小比例y.per = 0.1,       # 分组后每组中较少结果的最小比例p.cut = 0.1,       # p值截断round = 5)         # 保留几位小数# 打印找到的最佳阈值及相关信息
best_threshold_surv_2[order(best_threshold_surv_2$pvalue, decreasing = F), ]
#      cut1      n           n.per     y           y.per  pvalue p.adjust
# 1 4.420631 103/51 0.66883/0.33117 76/47 0.73786/0.92157 0.07617 7.08378 # 根据找到的最佳阈值对数据进行分组
best_threshold_data$Group = ifelse(best_threshold_data$risk_score >= best_threshold_surv_2[order(best_threshold_surv_2$pvalue, decreasing = F), ][1, 1],"High Risk","Low Risk")# 创建生存对象(Surv对象),包含生存时间和生存状态信息
surv_obj <- Surv(time = best_threshold_data$OS.time, event = best_threshold_data$OS)# 使用survfit()函数拟合生存曲线
surv_fit <- survfit(surv_obj ~ best_threshold_data$Group)# 绘制生存曲线
ggsurvplot(surv_fit, data = best_threshold_data, surv.median.line = "hv",pval = TRUE,                    # 显示p值xlab = "Time (days)", ylab = "Survival Probability",  # x轴和y轴标签legend.title = "",             # 图例标题为空break.x.by = 1000,             # x轴刻度间隔color = "strata",              # 根据分组着色palette = c("#bc5148", "#3090a1"))  # 自定义颜色

虽然不如刚刚那个,但也比原来好多啦是不!

X-Tile

这个我就不详细介绍啦!有兴趣的小伙伴们可以去点点点试试!

官网:https://medicine.yale.edu/lab/rimm/research/software/

教程:https://cloud.tencent.com/developer/news/283239

小小总结

  1. survminer包的surv_cutpoint函数
    • 基于maxstat包的maxstat.test函数计算出Maximally Selected Rank Statistics,通过最大化差异来确定最佳阈值。
    • 可以同时计算多个变量的最佳截断值。
    • 一次只能找到一个最佳截断值,无法同时找到多个截断值。
  2. cutoff包的logrank函数
    • 在自由度固定的情况下,计算log-rank卡方值,通过检验分组之间的差异来确定最佳阈值。
    • 提供了不同的函数用于计算多种模型的截断点,例如cox、linear、logit等,每种模型都使用对应的统计检验来确定阈值。
    • 一次只能找到一个最佳截断值。
  3. X-tile软件
    • 基于log-rank卡方值来确定最佳截断值,将数据分为不同组,可以选择找到一个或两个最佳截断值,以将数据分成两组或三组。
    • 一次只能计算一个变量的最佳阈值。

大家自行选择哟!依据个人经验,俺更推荐survminer包的surv_cutpoint函数,它在多数情况下表现都还不戳!个人观点,仅供参考!最终解释权归小蛮要所有!

文末碎碎念

那今天的分享就到这里啦!我们下期再见哟!

最后顺便给自己推荐一下嘿嘿嘿!

如果我的分享对你有用的话,欢迎关注点赞在看转发分享阿巴阿巴阿巴阿巴巴巴!这可是我的第一原动力!

蟹蟹你们的喜欢和支持!!!

啊对!如果小伙伴们有需求的话,也可以加入我们的交流群:一定要知道 | 永久免费的生信交流群终于来啦!

还有兴趣的话,也可以看看我掏心掏肺的干货满满 | 给生信小白的入门小建议 | 掏心掏肺版!绝对干货满满!

如果有小伙伴对付费分析有需求的话,可以看看这里:个性化科研服务 | 付费分析试营业正式启动啦!定制你的专属生信分析!可提供1v1答疑!

入群链接后续可能会不定期更新,主要是因为群满换码或是其他原因,如果小伙伴点开它之后发现,咦,怎么失效啦!不要慌!咱们辛苦一下动动小手去主页的要咨询那里,点击进交流群即可入群!

参考资料
  1. https://cloud.tencent.com/developer/article/1875291
  2. https://mp.weixin.qq.com/s/pOgbzHZNQC8z7KdrrrNd1A
  3. https://mp.weixin.qq.com/s/TB43jWO7CX8_o2eUXWl1Fw

这篇关于生存预后不显著?最佳阈值来帮你!| 附完整代码 + 注释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/806699

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

使用Go实现文件复制的完整流程

《使用Go实现文件复制的完整流程》本案例将实现一个实用的文件操作工具:将一个文件的内容完整复制到另一个文件中,这是文件处理中的常见任务,比如配置文件备份、日志迁移、用户上传文件转存等,文中通过代码示例... 目录案例说明涉及China编程知识点示例代码代码解析示例运行练习扩展小结案例说明我们将通过标准库 os

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤