多数问题求解之蒙特卡洛与分治法

2024-03-14 00:04

本文主要是介绍多数问题求解之蒙特卡洛与分治法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多数问题(Majority Problem)是一个有多种求解方法的经典问题,其问题定义如下:

给定一个大小为 n n n的数组,找出其中出现次数超过 n / 2 n/2 n/2的元素

例如:当输入数组为 [ 5 , 3 , 5 , 2 , 3 , 5 , 5 ] [5, 3, 5, 2, 3, 5, 5] [5,3,5,2,3,5,5],则 5 5 5是多数(majority)。

本文将介绍该问题的多种求解方法,重点介绍蒙特卡洛与分治法2种。

1. 解决思路

面对一个未知的算法问题,我们最开始很自然地会使用简单粗暴的方法。

1.1 暴力解法

暴力解法就是遍历整个数组,依次判断每个元素是否是多数。其伪代码如下:

Majority(A[1, n])
for(i = 1 to n)cnt = 1for(j = 1 to n)if (i != j and A[i]==A[j])cnt++endif (cnt > n/2) return "A[i] is the majortiy"endreturn "No majority"

暴力算法的缺点就是费时间,时间复杂度为 O ( n 2 ) O(n^2) O(n2)。那有什么办法能少一些遍历的时间代价呢?哈希表就是一种用空间换时间的方法。

1.2 哈希表

上面的暴力解法中,我们在循环遍历中更新元素出现的次数,然后再判断是否是多数。可以改为只遍历数组一次,用哈希表记录每个元素出现的次数,然后再遍历哈希表找到出现次数最大的元素,判断其出现次数是否超过 n / 2 n/2 n/2

这样时间复杂度降为了 O ( n ) O(n) O(n),空间复杂度为 O ( n ) O(n) O(n)。时间复杂度还能更优化一点吗?下面让我们来看下分治法的求解思路。

1.3 分治法

我们把原始数组分为两半:在前一半子数组中,找到多数 A A A;在后一半子数组中,找到多数 B B B。那么原始数组的多数一定在 A A A B B B之间,当二者相等时,原始数组的多数就已经找到了;当二者不等时,比较 A A A B B B出现的次数哪个大于 n / 2 n/2 n/2即可。

算法的时间复杂度 T ( n ) = T ( n / 2 ) + 2 n = O ( n log ⁡ n ) T(n)=T(n/2)+2n=O(n\log{n}) T(n)=T(n/2)+2n=O(nlogn)。具体的C语言代码实现可参见第2节。

1.4 蒙特卡洛法

蒙特卡罗(Monte Carlo)算法是一种随机算法,在一般情况下可以保证对问题的所有实例都以高概率给出正确解,但是通常无法判定一个具体解是否正确。

在多数问题中,蒙特卡洛法的思想是随机从数组中选择一个元素,判断是否是多数。如果不是多数的话,再随机选择一个。在存在多数的情况下,因为随机选择到多数的概率超过 1 2 \frac{1}{2} 21,算法找不到多数的概率小于 1 2 \frac{1}{2} 21

该算法的平均时间复杂度为 O ( n ) O(n) O(n)

2. 代码

以下C语言代码依次实现了Monte Carlo以及分治法求解多数问题,并比较了两种算法的运行时间。

  1. 首先用户需输入测试数据的文件路径,按下回车键。
  2. 然后进入Monte Carlo模式需输入重复的次数。
  3. 待用户输入完成,按下回车键后,对Monte Carlo算法求解多数问题计时开始,直至输出多数问题的结果计时结束,打印输出运行时间(ms)。
  4. Monte Carlo结束后直接进入分治法求解,开始计时,直至分治法输出多数问题的结果计时结束,打印输出运行时间(ms)。
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <windows.h> using namespace std;const int N = 2000000;        //定义数组的最大长度 int a[N];bool majorityMC_once(int a[], int len, int *result) { //对长度为len的数组a[]进行一次蒙特卡洛寻找多数 int rnd = rand() % len;  //生成[0, len-1)的一个随机下标 int x = a[rnd];int count = 0;           //记录 x 在数组a[]中出现的次数 for (int i = 0; i < len; i++) { if (a[i] == x) {count++;}}if (count > (len / 2)) { //若 x 出现次数超过数组长度的一半,则一次蒙特卡洛找到多数,返回true *result = x;         //将找到的多数的值传给result return true;} else {                   //否则,一次蒙特卡洛未找到多数,返回false return false;}
}bool majorityMC_k_times(int a[], int len, int *result, int k) { //k次蒙特卡洛 for (int i = 1; i <= k; i++) {if(majorityMC_once(a, len, result)) { //只要有一次蒙特卡洛找到多数,则返回true              return true;}} return false;                             //k次蒙特卡洛均未找到多数,则返回false 
}bool majorityDC(int a[], int start, int end, int *result) { //分治法求解多数问题,数组下标区间为[start, end] if (start == end) {*result = a[end];return true;}else {int m1, m2;majorityDC(a, start, (start + end) / 2, &m1);    //m1为前半区间[start, (start + end) / 2]的多数 majorityDC(a, (start + end) / 2 + 1, end, &m2);  //m2为后半区间[(start + end) / 2 + 1, end]的多数 int count1 = 0, count2 = 0;for (int i = start; i <= end; i++) {if (a[i] == m1) {     //count1记录m1在数组a[]中出现的次数 count1++;}if (a[i] == m2) {     //count2记录m2在数组a[]中出现的次数 count2++;}}if (count1 > ((end - start + 1) / 2)) { //m1在数组a[]中出现的次数大于数组长度的一半,则m1为多数 *result = m1;return true;} else if (count2 > ((end - start + 1) / 2)) { //m2在数组a[]中出现的次数大于数组长度的一半,则m2为多数 *result = m2;return true;}else {  return false;         //m1, m2均不是多数,则数组a[]的多数不存在}}
}int main() {srand(time(NULL));  //设置时间函数time(NULL)为随机数种子 char s[100];cout << "请输入测试数据文件路径:" << endl;cin >> s; FILE *fp;fp = fopen(s, "r");if (fp == NULL) {cout << "Can not open the file!" << endl;exit(0);}int i = 0;while (fscanf(fp, "%d\n", &a[i]) != EOF) {  //读取文件中的数据到数组a[]中 i++;}fclose(fp); cout << "********************** Monte Carlo *********************" << endl;int k;cout << "请输入 Monte Carlo 重复的次数: ";cin >> k;LARGE_INTEGER nFreq;LARGE_INTEGER nBeginTime;LARGE_INTEGER nEndTime;QueryPerformanceFrequency(&nFreq);QueryPerformanceCounter(&nBeginTime);  //Monte Carlo计时开始 int resultMC;if (majorityMC_k_times(a, i, &resultMC, k)) {cout << resultMC << " is the majority" << endl;} else {cout << "Can not find the majority!" << endl;}QueryPerformanceCounter(&nEndTime);  //Monte Carlo计时结束 double time = (double)(nEndTime.QuadPart - nBeginTime.QuadPart) / nFreq.QuadPart * 1000;cout << "Running time: " << time << "ms" << endl;cout << endl;cout << "****************** Divide and Conquer ******************" << endl;QueryPerformanceFrequency(&nFreq);QueryPerformanceCounter(&nBeginTime);  //分治法计时开始 int resultDC;if (majorityDC(a, 0, i - 1, &resultDC)) {cout << resultDC << " is the majority" << endl;} else {cout << "Can not find the majority!" << endl;}QueryPerformanceCounter(&nEndTime);    //分治法计时结束 time = (double)(nEndTime.QuadPart - nBeginTime.QuadPart) / nFreq.QuadPart * 1000;cout << "Running time: " << time << "ms" << endl;return 0;
}

3. 运行结果

基于测试数据,求解得到如下结果:

  • dataset1.txt:none
  • dataset2.txt:991
  • data_1015.txt:none
  • data_1015l.txt:none

多次运行程序发现,在多数问题有解时,采用Monte Carlo算法求解效率普遍比分治法高,但是在Monte Carlo算法重复次数较少时,它在实际中并不总是返回正确结果。如测试数据为dataset2.txt,Monte Carlo重复1次时,可能会找不到多数问题的解,如下图。

在这里插入图片描述

其他运行示例:

(1)dataset1.txt,Monte Carlo重复次数1000:

在这里插入图片描述

(2)dataset2.txt,Monte Carlo重复次数20:

在这里插入图片描述

(3)data_1015.txt,Monte Carlo重复次数1000:

在这里插入图片描述

(4)data_1015l.txt,重复次数1000:

在这里插入图片描述

这篇关于多数问题求解之蒙特卡洛与分治法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/806634

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使