C语言函数内存分配机制及函数栈帧详解

2024-03-13 21:18

本文主要是介绍C语言函数内存分配机制及函数栈帧详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. 函数内存分配细节
  • 2. 函数栈帧的由来
  • 3. 函数栈帧的共享
  • 4. 函数的内存分配规律小结

1. 函数内存分配细节

我们先看带有一个自定义函数时的内存分配情况。

int add(int a, int b) {int c = 25;printf("%10s: %p\n", "add_c", &c);printf("%10s: %p\n", "add_b", &b);printf("%10s: %p\n", "add_a", &a);return a + b + c;
}int main() {printf("------- Function Addresses -------\n\n");int (*fp1)(int, int) = add;printf("%10s: %p\n", "add_func", fp1);int (*fp)(void) = main;printf("%10s: %p\n", "main_func", fp);printf("\n");printf("------- Stack Frame Addresses -------\n");printf("\n");fp1(2, 3);printf("\n");fp1(5, 8);printf("\n");printf("------- Main Function Local Variable Addresses -------\n\n");int a = 55;int b = 88;printf("%10s: %p\n", "main_b", &b);printf("%10s: %p\n", "main_a", &a);printf("%10s: %p\n", "main_fp", &fp);printf("%10s: %p\n", "main_fp1", &fp1);return 0;
}

显示:

------- Function Addresses -------add_func: 0x100003bd0main_func: 0x100003c50------- Stack Frame Addresses -------add_c: 0x7ffeefbff3e4add_b: 0x7ffeefbff3e8add_a: 0x7ffeefbff3ecadd_c: 0x7ffeefbff3e4add_b: 0x7ffeefbff3e8add_a: 0x7ffeefbff3ec------- Main Function Local Variable Addresses -------main_b: 0x7ffeefbff440main_a: 0x7ffeefbff444main_fp: 0x7ffeefbff448main_fp1: 0x7ffeefbff450

这段代码中,共有mainadd两个函数,main函数有4个本地变量,add函数有2个形参及1个本地变量。

先不考虑程序运行的时间顺序,只看内存的分配地址。从上到下,内存地址从低位到高位排列。正如上面的标题所分离,这里的内存分成3大区域,分别是addmain两个函数地址所在区域、add函数的形参及其本地变量的内存区域,以及main函数中4个本地变量的内存区域。

addmain两个函数的地址都在最低位。函数地址的内存区域,按函数的声明顺序分配内存地址。

接着是add函数的形参a, b及本地变量c的地址。这三个变量中,本地变量c的地址最低,然后是第2个形参b, 最后才是第1个形参a

从进栈顺序来看,第1个形参a先进栈,然后是第2个形参b进栈,最后是add函数本地变量c进栈。其规律是,最先声明的变量先进栈。

最后是main函数4个本地变量的内存区域。同样,也是最先声明的变量先进栈。

2. 函数栈帧的由来

我们看到,main函数调用了2次add函数,第2次调用,其2个形参与其1个本地变量的地址,与第1次调用时的地址都是完全一样的。根据此特点,我们稍微调整一下文本示意图:

                     1st            2nd
--------------------------------------------var  | val ||  var  | val-----------------------------
0x7ffeefbff3e4: add_c |  25 || add_c |  25
0x7ffeefbff3e8: add_b |  3  || add_b |  8
0x7ffeefbff3ec: add_a |  2  || add_a |  5

因为add函数中的变量c每次调用被初始化为“25”,因此它两次调用的值都不会变,但均在“0x7ffeefbff3e4”这个地址上存储其值。而add函数中的形参ab两次调用所传入的值都不一样,但在不同调用期间其所分配的地址也都是固定的,分别为“0x7ffeefbff3ec”及“0x7ffeefbff3e8”。

也就是说,每调用一次add函数,都会以“0x7ffeefbff3ec”的地址为该函数的栈区,依序将各变量压进栈区。退出函数后,这一部分的内存区域的数据不会被改变,再一次调用函数时,再次修改该内存区域的内容。

这个特点,对C语言程序员来讲很重要。因为形参ab会随着实参的变化而变化,因此对于形参,我们能犯错误的机会较少。而对于函数内部的自动变量来讲,我们非常容易犯错。

如果从函数内部返回一个数值,因为是传值的原因,问题不大。

int test() {int a = 3;return a;
}int main() {int x = test();
}

当从test函数返回a时,其值“3”被赋值于main函数中的x变量,main函数即与test函数断开了连接,以后无论哪个进程、哪段代码重新调用test函数,main函数中的x变量都不会受到影响。

但是,如果从test函数返回的是该本地变量的指针,则就需要特别小心了。

int *test(int a, int b) {int c = a + b;return &c;
}int main() {int *x = test(2, 3);printf("%d\n", *x);  // 5test(20, 30);printf("%d\n", *x);  // 50
}

test函数返回的是两数相加结果的变量的指针。第一次调用时,main函数的x指针变量的值为5,这没问题。但第2次调用test函数后,还是同样的地址,但该地址所存储的值已经被第2次调用所改变,此时再来打印x的值,已经悄悄地被改变了。

其实,在遇到这类问题的时候,编译器会给出警示:

Address of stack memory associated with local variable 'c' returned

即,在栈区中返回了本地变量的地址。原因如同上面所分析的一样,栈区中某个固定的地址,其内容是就像万花筒一样,千变万化而不可预料。

对于上例,我们说内存地址从“0x7ffeefbff3ec”到“0x7ffeefbff3e4”的内存空间为栈帧stack frame),即系统将在这里进行进栈出栈操作。存放在这一区域的本地变量,因为由系统根据需要来分配内存地址及改变其值,因此也称为自动变量。

推而广之,如果从某个函数中返回char *类型的字符指针,是安全的,因为字符指针是一种静态变量,其生命周期与全局变量一样,存活于整个应用程序期间,其内存空间不在栈帧中,而在特定的内存区域,不会被随意修改。但如果传回char str[n]类型的字符数组,同属于本地变量,就需要我们特别小心了。

3. 函数栈帧的共享

现在,我们再加入另外一个有3个形参的sub函数。

int sub(int a, int b, int c) {int d = a - b - c;printf("%10s: %p\n", "sub_d", &d);printf("%10s: %p\n", "sub_c", &c);printf("%10s: %p\n", "sub_b", &b);printf("%10s: %p\n", "sub_a", &a);return d;
}int add(int a, int b) {int c = 25;printf("%10s: %p\n", "add_c", &c);printf("%10s: %p\n", "add_b", &b);printf("%10s: %p\n", "add_a", &a);return a + b + c;
}int main() {printf("------- Function Addresses -------\n\n");int (*fp2)(int, int, int) = sub;printf("%10s: %p\n", "sub_func", fp2);int (*fp1)(int, int) = add;printf("%10s: %p\n", "add_func", fp1);int (*fp)(void) = main;printf("%10s: %p\n", "main_func", fp);printf("\n");printf("------- Stack Frame Addresses -------\n");printf("\n");fp1(2, 3);printf("\n");fp2(15, 7, 1);printf("\n");printf("------- Main Function Local Variable Addresses -------\n\n");int a = 55;int b = 88;printf("%10s: %p\n", "main_b", &b);printf("%10s: %p\n", "main_a", &a);printf("%10s: %p\n", "main_fp", &fp);printf("%10s: %p\n", "main_fp1", &fp1);printf("%10s: %p\n", "main_fp2", &fp2);return 0;
}

显示:

------- Function Addresses -------sub_func: 0x100003ac0add_func: 0x100003b60main_func: 0x100003be0------- Stack Frame Addresses -------add_c: 0x7ffeefbff3d4add_b: 0x7ffeefbff3d8add_a: 0x7ffeefbff3dcsub_d: 0x7ffeefbff3d0sub_c: 0x7ffeefbff3d4sub_b: 0x7ffeefbff3d8sub_a: 0x7ffeefbff3dc------- Main Function Local Variable Addresses -------main_b: 0x7ffeefbff438main_a: 0x7ffeefbff43cmain_fp: 0x7ffeefbff440main_fp1: 0x7ffeefbff448main_fp2: 0x7ffeefbff450

函数地址按是按声明的顺序,从低位到高位分配空间。main函数内的各个局域变量,还是按声明的顺序进栈。

注意“Stack Frame Addresses”部分,add函数及sub函数的形参、局域变量都共享相同的内存空间! 且因为sub函数的形参、局域变量的数量较多,因此最后一个变量d依照从高位内存到低位内存进栈的顺序最后一个进栈。

4. 函数的内存分配规律小结

综上,函数的内存分配规律如下:

  1. 函数在内存低位分配空间,且依声明的顺序从低位到高位分配。
  2. 函数地址与函数所使用的数据相分离,函数所使用的数据在较高位的内存区域中分配。
  3. 函数所使用的数据所占用的内存空间称为函数栈帧,按形参、函数局域变量的声明顺序先后压入函数栈帧中。
  4. 函数栈帧的范围从高位内存向低位内存的方向延展。
  5. 众多函数所使用的数据,都共享同一函数栈帧,因此如同上海十里洋场,啥货都有。
  6. 函数栈帧中的数据,最主要是函数的局域变量的值,随时变化,难以预料,因此最好不要从函数栈帧中返回局域变量的指针。
  7. 主函数中的各局域变量,也是根据声明的顺序,沿高位内存到低位内存的方向压栈。

函数内存分配机制并不复杂。函数栈帧的特点,更是与汇编语言如此之近。这是C语言作为一门高级语言,在方便编码的同时,又能灵活地操纵底层细节的一个例子。了解并掌握函数内存分配机制,可让我们在高效地使用指针时清楚地知道自己在干什么,从而避免出现一些不易察觉的bug。

这篇关于C语言函数内存分配机制及函数栈帧详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/806224

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语