基于Redis 的高并发抢红包程序是如何实现的

2024-03-13 13:58

本文主要是介绍基于Redis 的高并发抢红包程序是如何实现的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

下面介绍一种基于redis的抢红包方案。
把原始的红包称为大红包,拆分后的红包称为小红包。
1.小红包预先生成,插到数据库里,红包对应的用户ID是null,红包生成算法如下:
预先生成所有的红包还是一个请求随机生成一个红包
简单来说,就是把一个大整数m分解(直接以“分为单位,如1元即100)分解成n个小整数的过程,小整数的范围是[min, max]。
最简单的思路,先保底,每个小红包保证有min,然后每个请求都随机生成一个0到(max-min)范围的整数,再加上min就是红包的钱数。
这个算法虽然简单,但是有一个弊端:最后生成的红包可能都是min钱数的。也就是说可能最后的红包都是0.01元的。
另一种方式是预先生成所有红包,这样就比较容易控制了。我选择的是预先生成所有的红包。
理想的红包生成算法:
理想的红包生成结果是平均值附近的红包比较多,大红包和小红包的数量比较少。
可以想像下,生成红包的数量的分布有点像正态分布。
那么如何实现这种平均线附近值比较多的要求呢?
就是要找到一种算法,可以提高平均值附近的概率。那么利用一种”膨胀“再”收缩“的方式来达到这种效果。
先平方,再生成平方范围内的随机数,再开方,那么概率就不再是平均的了。
2.每个大红包对应两个redis队列,一个是未消费红包队列,另一个是已消费红包队列。开始时,把未抢的小红包全放到未消费红包队列里。
未消费红包队列里是json字符串,如{userId:’789′, money:’300′}。
3.在redis中用一个map来过滤已抢到红包的用户。
4.抢红包时,先判断用户是否抢过红包,如果没有,则从未消费红包队列中取出一个小红包,再push到另一个已消费队列中,最后把用户ID放入去重的map中。
5.用一个单线程批量把已消费队列里的红包取出来,再批量update红包的用户ID到数据库里。
上面的流程是很清楚的,但是在第4步时,如果是用户快速点了两次,或者开了两个浏览器来抢红包,会不会有可能用户抢到了两个红包?
为了解决这个问题,采用了lua脚本方式,让第4步整个过程是原子性地执行。
下面是在redis上执行的Lua脚本:
-- 函数:尝试获得红包,如果成功,则返回json字符串,如果不成功,则返回空
-- 参数:红包队列名, 已消费的队列名,去重的Map名,用户ID
-- 返回值:nil 或者 json字符串,包含用户ID:userId,红包ID:id,红包金额:money
-- 如果用户已抢过红包,则返回nil
if redis.call('hexists', KEYS[3], KEYS[4]) ~= 0 then
  return nil
else
  -- 先取出一个小红包
  local hongBao = redis.call('rpop', KEYS[1]);
  if hongBao then
    local x = cjson.decode(hongBao);
    -- 加入用户ID信息
    x['userId'] = KEYS[4];
    local re = cjson.encode(x);
    -- 把用户ID放到去重的set里
    redis.call('hset', KEYS[3], KEYS[4], KEYS[4]);
    -- 把红包放到已消费队列里
    redis.call('lpush', KEYS[2], re);
    return re;
  end
end
return nil

下面是测试代码:
public class TestEval {
    static String host = "localhost";
    static int honBaoCount = 1_0_0000;
    static int threadCount = 20;
    static String hongBaoList = "hongBaoList";
    static String hongBaoConsumedList = "hongBaoConsumedList";
    static String hongBaoConsumedMap = "hongBaoConsumedMap";
    static Random random = new Random();
//  -- 函数:尝试获得红包,如果成功,则返回json字符串,如果不成功,则返回空
//  -- 参数:红包队列名, 已消费的队列名,去重的Map名,用户ID
//  -- 返回值:nil 或者 json字符串,包含用户ID:userId,红包ID:id,红包金额:money
    static String tryGetHongBaoscript = 
//          "local bConsumed = redis.call('hexists', KEYS[3], KEYS[4]);\n"
//          + "print('bConsumed:' ,bConsumed);\n"
            "if redis.call('hexists', KEYS[3], KEYS[4]) ~= 0 then\n"
            + "return nil\n"
            + "else\n"
            + "local hongBao = redis.call('rpop', KEYS[1]);\n"
//          + "print('hongBao:', hongBao);\n"
            + "if hongBao then\n"
            + "local x = cjson.decode(hongBao);\n"
            + "x['userId'] = KEYS[4];\n"
            + "local re = cjson.encode(x);\n"
            + "redis.call('hset', KEYS[3], KEYS[4], KEYS[4]);\n"
            + "redis.call('lpush', KEYS[2], re);\n"
            + "return re;\n"
            + "end\n"
            + "end\n"
            + "return nil";
    static StopWatch watch = new StopWatch();
 
    public static void main(String[] args) throws InterruptedException {
//      testEval();
        generateTestData();
        testTryGetHongBao();
    }
 
    static public void generateTestData() throws InterruptedException {
        Jedis jedis = new Jedis(host);
        jedis.flushAll();
        final CountDownLatch latch = new CountDownLatch(threadCount);
        for(int i = 0; i < threadCount; ++i) {
            final int temp = i;
            Thread thread = new Thread() {
                public void run() {
                    Jedis jedis = new Jedis(host);
                    int per = honBaoCount/threadCount;
                    JSONObject object = new JSONObject();
                    for(int j = temp * per; j < (temp+1) * per; j++) {
                        object.put("id", j);
                        object.put("money", j);
                        jedis.lpush(hongBaoList, object.toJSONString());
                    }
                    latch.countDown();
                }
            };
            thread.start();
        }
        latch.await();
    }
 
    static public void testTryGetHongBao() throws InterruptedException {
        final CountDownLatch latch = new CountDownLatch(threadCount);
        System.err.println("start:" + System.currentTimeMillis()/1000);
        watch.start();
        for(int i = 0; i < threadCount; ++i) {
            final int temp = i;
            Thread thread = new Thread() {
                public void run() {
                    Jedis jedis = new Jedis(host);
                    String sha = jedis.scriptLoad(tryGetHongBaoscript);
                    int j = honBaoCount/threadCount * temp;
                    while(true) {
                        Object object = jedis.eval(tryGetHongBaoscript, 4, hongBaoList, hongBaoConsumedList, hongBaoConsumedMap, "" + j);
                        j++;
                        if (object != null) {
//                          System.out.println("get hongBao:" + object);
                        }else {
                            //已经取完了
                            if(jedis.llen(hongBaoList) == 0)
                                break;
                        }
                    }
                    latch.countDown();
                }
            };
            thread.start();
        }
 
        latch.await();
        watch.stop();
 
        System.err.println("time:" + watch.getTotalTimeSeconds());
        System.err.println("speed:" + honBaoCount/watch.getTotalTimeSeconds());
        System.err.println("end:" + System.currentTimeMillis()/1000);
    }
}

测试结果20个线程,每秒可以抢2.5万个,足以应付绝大部分的抢红包场景。
如果是真的应付不了,拆分到几个redis集群里,或者改为批量抢红包,也足够应付。
redis的抢红包方案,虽然在极端情况下(即redis挂掉)会丢失一秒的数据,但是却是一个扩展性很强,足以应付高并发的抢红包方案。

这篇关于基于Redis 的高并发抢红包程序是如何实现的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/805108

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin