因子分析(SPSS和Python)

2024-03-13 08:50
文章标签 python spss 因子分析

本文主要是介绍因子分析(SPSS和Python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、源数据

二、SPSS因子分析

2.1.导入数据

2.2.标准化处理

由于指标的量纲不同(单位不一致),因此,需要对数据进行标准化处理

2.3.因子分析

点击“确定”后,再回到“总方差解释”表格,以“旋转载荷平方和”中的各成分因子贡献率为权重,对因子得分做加权平均处理,可计算出综合得分

即:综合得分=(0.72283 * FAC1_1+0.19629 * FAC2_1) / 0.91912

其中,FAC1_1是成分1因子得分,FAC2_1是成分2因子得分,0.72283是成分1方差百分比(成分1因子贡献率),0.19629是成分2方差百分比(成分2因子贡献率),0.91912是累积方差百分比(累计因子贡献率)

2.4.输出结果

皮尔逊相关性矩阵:

通过计算指标之间的线性相关性,了解指标之间的相关性强弱,有助于确定因子个数和处理可能存在的共线性问题,如果相关性矩阵中大部分相关系数小于0.3且未通过充分性检验,则不适用于因子分析

充分性检验(KMO和Bartlett检验):

KMO检验:KMO值介于0和1之间,如果全部变量间相关系数平方和远大于偏相关系数平方和则KMO值接近1,KMO值越接近1越适合作因子分析。一般情况下,当KMO值大于0.6(严格一点就以0.7为阈值进行判断)时,表示指标之间的相关性较强,偏相关性较弱,适合做因子分析

Bartlett检验:原假设相关系数矩阵为单位阵,若得到的概率值小于规定的显著性水平(一般取0.05,严格一点就以0.01为阈值进行判断)则拒绝原假设,认为数据适合做因子分析,通俗来讲,即显著性水平越趋近于0则越适合做因子分析,反之则不能拒绝原假设,即数据不适合做因子分析

公因子方差:

从公因子方差可以看出各原始指标变量间的共同度,即各原始指标变量能被提取出的程度,由图可知,所有指标变量的共同度都在0.6以上,大部分指标变量的共同度在0.95以上,说明因子能解释指标变量中的大部分信息,适合进行因子分析

总方差解释:

在总方差解释表中,可以看出提取2个成分因子时,其累计贡献率即可达到91.912%,说明选取2个成分因子就足以代替原来6个指标变量,能够解释原来6个指标变量所涵盖的大部分信息

碎石图:

在碎石图中,可以看出第一个因子的特征值最高,方差贡献最大,第二个因子其次,第三个因子之后的特征值都较低了,对原来6个指标变量的解释程度也就较低,可以忽略,因此,提取2个成分因子是比较合适的

成分矩阵:

由成分矩阵可知,成分因子1主要解释人均GDP、财政总收入、全体常住居民人均可支配收入、金融机构人民币贷款余额、全社会能耗等5个指标变量的信息,可定义为综合发展因子F1,成分因子2主要解释供应土地这一个指标变量的信息,可定义为资源因子F2

旋转后的成分矩阵:

在旋转之前,原始因子的载荷矩阵通常会产生一些问题,即一些变量与多个因子之间的载荷值都很高,而其他变量则没有明显的载荷值,在这种情况下,因子以及它们的载荷解释可能会变得模糊不清,难以解释或者解释力度不够,旋转后的成分矩阵则是能够更清晰地解释变量与因子之间的关系,从而提高了因子模型的可解释性

成分转换矩阵:

用来说明旋转前后成分因子间的系数对应关系

旋转后的空间中的组件图:

由图可知,人均GDP、财政总收入、全体常住居民人均可支配收入、金融机构人民币贷款余额、全社会能耗等5个指标变量基本是在同一个维度上的(横轴),这与综合发展因子F1是对应的,而供应土地这一个指标变量则是在另一个维度(纵轴),这则是与资源因子F2是对应的,说明提取2个因子是合理的,具有一定的可解释性

成分得分系数矩阵:

综合发展因子F1得分:

资源因子F2得分:

成分得分协方差矩阵:

因子得分:

FAC1_1是成分1因子得分,即综合发展因子F1得分,FAC2_1是成分2因子得分,即资源因子F2得分,具体计算公式在“成分得分系数矩阵”已作说明

综合得分:

综合得分=(0.72283 * 综合发展因子F1得分+0.19629 * 资源因子F2得分) / 0.91912

三、Python因子分析

3.1.导入第三方库

# 导入第三方库
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from factor_analyzer import FactorAnalyzer,calculate_kmo,calculate_bartlett_sphericity
import matplotlib.pyplot as plt
import seaborn as sns# 忽略警告
import warnings
warnings.filterwarnings("ignore")# 绘图时正常显示中文
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False

3.2.读取数据

# 读取数据
data=pd.read_excel('数据.xlsx',sheet_name='Sheet1',header=1)
print(data)

3.3.标准化处理

# 数据标准化处理
data_std=pd.DataFrame(StandardScaler().fit_transform(data.iloc[:,1:]),columns=data.columns[1:])
print(data_std)

3.4.皮尔逊相关性检验

# 皮尔逊相关性矩阵
data_corr=data_std.corr(method='pearson')
print(data_corr)

# 皮尔逊相关性热力图
plt.figure(figsize=(8,6))
sns.heatmap(data_corr,cmap='PuBu',annot=True,annot_kws={'fontsize':8})
plt.xticks(fontsize=8)
plt.yticks(fontsize=8)
plt.tight_layout()

3.5.充分性检验(KMO检验和Bartlett检验)

# KMO检验和Bartlett检验
kmo=calculate_kmo(data_std) # KMO>0.6,则通过KMO检验
bartlett=calculate_bartlett_sphericity(data_std) # Bartlett<0.05,则通过Bartlett检验
print('\nKMO检验:',kmo[1],'\nBartlett检验:',bartlett[1],'\n')

3.6.旋转前载荷矩阵

# 旋转前载荷矩阵
matrix=FactorAnalyzer(rotation=None,n_factors=8,method='principal')
matrix.fit(data_std)
f_contribution_var =matrix.get_factor_variance()
matrices_var = pd.DataFrame()
matrices_var["旋转前特征根"] = f_contribution_var[0]
matrices_var["旋转前方差贡献率"] = f_contribution_var[1]
matrices_var["旋转前方差累计贡献率"] = f_contribution_var[2]
print('旋转前载荷矩阵的贡献率:\n',matrices_var,'\n')

3.7.旋转后载荷矩阵

# 旋转后载荷矩阵
matrix_rotated=FactorAnalyzer(rotation='varimax',n_factors=2,method='principal')
matrix_rotated.fit(data_std)
f_contribution_var_rotated = matrix_rotated.get_factor_variance()
matrices_var_rotated = pd.DataFrame()
matrices_var_rotated["旋转后特征根"] = f_contribution_var_rotated[0]
matrices_var_rotated["旋转后方差贡献率"] = f_contribution_var_rotated[1]
matrices_var_rotated["旋转后方差累计贡献率"] = f_contribution_var_rotated[2]
print('旋转后载荷矩阵的贡献率:\n',matrices_var_rotated,'\n')

3.8.公因子方差表

# 公因子方差表
communalities=pd.DataFrame(matrix_rotated.get_communalities(),index=data_std.columns)
print('公因子方差表:\n',communalities)

3.9.绘制碎石图

# 绘制碎石图
ev,v=matrix_rotated.get_eigenvalues()
plt.figure(figsize=(6,6))
plt.scatter(range(1,data_std.shape[1]+1),ev)
plt.plot(range(1,data_std.shape[1]+1),ev)
plt.title('碎石图')
plt.xlabel('因子个数')
plt.ylabel('特征根')

3.10.绘制成分矩阵热力图

# 绘制成分矩阵热力图
component_matrix=pd.DataFrame(np.abs(matrix_rotated.loadings_),index=data_std.columns,columns=['成分因子1','成分因子2'])
plt.figure(figsize=(6,6))
sns.heatmap(component_matrix,annot=True,cmap='Blues')
plt.tight_layout()

3.11.绘制成分矩阵二维空间组件图

# 绘制成分矩阵二维空间组件图
plt.figure(figsize=(6,6))
x=component_matrix.iloc[:,0]
y=component_matrix.iloc[:,1]
plt.scatter(x,y)
for i in range(len(component_matrix)):plt.annotate(component_matrix.index[i],(x[i],y[i]),textcoords='offset points',xytext=(-10,-10),ha='center',fontsize=8)
plt.xlabel(component_matrix.columns[0])
plt.ylabel(component_matrix.columns[1])
plt.title('二维空间组件图')
plt.grid(True)

3.12.计算因子得分

# 计算因子得分
factor_score=pd.DataFrame(matrix_rotated.transform(data_std),columns=['成分1','成分2'])
print(factor_score)

3.13.计算综合得分

# 计算综合得分
weight=matrices_var_rotated["旋转后方差贡献率"]/np.sum(matrices_var_rotated["旋转后方差贡献率"])
factor_score["综合得分"]=np.dot(factor_score,weight)
factor_score=pd.concat([data.iloc[:,0],factor_score],axis=1)
print('原顺序:\n',factor_score)

# 按综合得分从高到低排序
factor_score=factor_score.sort_values(by='综合得分',ascending=False)
factor_score=factor_score.reset_index(drop=True)
factor_score.index=factor_score.index+1
print('按综合得分从高到低排序:\n:',factor_score)

3.14.保存综合得分到excel

# 保存综合得分到新的excel
factor_score.to_excel('综合得分.xlsx',index_label='排名')

这篇关于因子分析(SPSS和Python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/m0_67790374/article/details/133788611
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/804296

相关文章

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

基于Python+PyQt5打造一个跨平台Emoji表情管理神器

《基于Python+PyQt5打造一个跨平台Emoji表情管理神器》在当今数字化社交时代,Emoji已成为全球通用的视觉语言,本文主要为大家详细介绍了如何使用Python和PyQt5开发一个功能全面的... 目录概述功能特性1. 全量Emoji集合2. 智能搜索系统3. 高效交互设计4. 现代化UI展示效果

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.

Python实现一键PDF转Word(附完整代码及详细步骤)

《Python实现一键PDF转Word(附完整代码及详细步骤)》pdf2docx是一个基于Python的第三方库,专门用于将PDF文件转换为可编辑的Word文档,下面我们就来看看如何通过pdf2doc... 目录引言:为什么需要PDF转Word一、pdf2docx介绍1. pdf2docx 是什么2. by

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使