stm32F103RCT6使用FFT运算分析波形详解(细致教学)

2024-03-12 22:20

本文主要是介绍stm32F103RCT6使用FFT运算分析波形详解(细致教学),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近学校电赛队伍招新,出的招新题就是低频示波器的。之前一直没有弄懂FFT,借着这次机会实现了一下,做了一个小示波器

  • FFT原理简述

FFT,就是快速傅里叶变换,这个操作能够将时域信号转化成频域信号,然后对信号进行分析

  这样说可能有点抽象。讲细点就是指能够直观的看出来目标信号的频率是多少。x轴坐标本来是表示时间,FFT之后变成了表示频率,就是这个意思

  对于信号处理,FFT之后的结果,波峰一般会出现在我们希望测得信号的频率附近(十分相近)

  • 官方文件解释

stm32官方给了几个用于处理FFT的文件,如图所示:

其中有两个汇编文件两个头文件:汇编文件是定义了FFT的计算函数,我们直接调用即可

cr4_fft_1024_stm32.s是包含了计算1024个点的FFT的函数的汇编文件,另一个汇编文件同理

stm32_dsp.h里面有关于FFT处理函数的声明,我们包含了这个头文件之后直接调用函数即可

补充:stm32_dsp.h当中有一个include的头文件,需要根据情况进行修改,比如说用其他型号板子或者其他库开发的记得要修改,不然编译时会报错

  • 算法解释
//进行FFT运算等操作
void FFT_Wave(void)
{u16 i;float mid_value;while(!ADC_flag){LED1 = !LED1;delay_ms(100);}ADC_flag = 0;//获取最大值最小值adc_value_max = adc_value_min = ADC_buff[1];for(i = 0;i < NPT;i++){//寻找最大值最小值if(ADC_buff[i] >= adc_value_max){adc_value_max = ADC_buff[i];}if(ADC_buff[i] <= adc_value_min){adc_value_min = ADC_buff[i];}//先清空数组fftin[i] = 0;//移位,让后面16位为虚部fftin[i] = ((s16)ADC_buff[i] << 16);}cr4_fft_1024_stm32(fftout,fftin,1024);//FFTGetPowerMag();//计算电压值Vpp_true = (adc_value_max - adc_value_min) * 3.3 / 4096.0;//获得Vpp值mid_value = (adc_value_max + adc_value_min) / 2;for(int i = 0;i < NPT;i++){if(ADC_buff[i] > mid_value){rect_duty++;}}rect_duty = rect_duty / 1024 * 100;
}

这是FFT的主体函数

第一步我们先要等待ADC采集完成,将数据存入数组当中准备进行处理

第二步是在采样值当中寻找最大值和最小值(遍历数组即可)

第三步是对数组进行移位处理(前面的是实部,后面的是虚部,由于我们采集到的电压都是实数,所以虚部都置0)

第四步是使用ST官方提供的函数进行FFT运算,得到运算之后的数组

第五步是根据频谱查找我们信号所对应的频率,也就是对频谱图当中所有的频率进行幅值的比较,找出幅值最大时所对应的频率,即为我们所需要测量的频率,其他的都可以看作噪声

在我们找到该频率之后,不能立刻输出,要与ADC的采样率相乘再除以1024,之后才能得到我们想要的信号频率

GetPowerMag函数定义如下:

void GetPowerMag(void)
{s16 lX,lY;u32 i;float maxmag;for(i = 0;i < NPT / 2;i++){lX = (fftout[i] << 16) >> 16;lY = (fftout[i] >> 16);float X = 1024 * ((float)lX) / 32768;float Y = 1024 * ((float)lY) / 32768;float mag = sqrt(X * X + Y * Y) / 1024;FFT_Mag[i] = (u32)(mag * 65536);}FFT_Mag[0] >>= 1;//频谱图第一个是直流分量,无需乘2for(int i = 0;i < NPT / 2;i++){if((maxmag < FFT_Mag[i]) && (i != 0)){maxmag = FFT_Mag[i];temp = i;}}F_hz = temp * sampling_rate / 1024.0;
}

至此,我们就得到了我们所需信号的频率

鉴于本小白能力有限,如果有纰漏或改进之处,欢迎指正

特别提醒:ADC采样率应遵循奈奎斯特采样定理!采样率不是越高越好(因为采样率太高会降低采样的精度,采样率太低会导致高频信号发生混叠现象)!

这个是上面用到的汇编文件的百度盘分享链接,失效了可以私聊cue我更新

链接:https://pan.baidu.com/s/1n8Hl09SmLhp963-vYbA2iw?pwd=1234 
提取码:1234 

这篇关于stm32F103RCT6使用FFT运算分析波形详解(细致教学)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802760

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景