常用cheat sheet 整理(正则、git、jquery、机器学习等等)

本文主要是介绍常用cheat sheet 整理(正则、git、jquery、机器学习等等),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

git cheat sheet



链接:https://www.git-tower.com/blog/git-cheat-sheet/

django cheat sheet





链接:https://www.mercurytide.co.uk/media/resources/django-cheat-sheet-a4.pdf

正则表达式


链接:http://www.cnblogs.com/huxi/archive/2010/07/04/1771073.html

一、校验数字的表达式

1 数字:^[0-9]*$

2 n位的数字:^\d{n}$

3 至少n位的数字:^\d{n,}$

4 m-n位的数字:^\d{m,n}$

5 零和非零开头的数字:^(0|[1-9][0-9]*)$

6 非零开头的最多带两位小数的数字:^([1-9][0-9]*)+(.[0-9]{1,2})?$

7 带1-2位小数的正数或负数:^(\-)?\d+(\.\d{1,2})?$

8 正数、负数、和小数:^(\-|\+)?\d+(\.\d+)?$

9 有两位小数的正实数:^[0-9]+(.[0-9]{2})?$

10 有1~3位小数的正实数:^[0-9]+(.[0-9]{1,3})?$

11 非零的正整数:^[1-9]\d*$ 或 ^([1-9][0-9]*){1,3}$ 或 ^\+?[1-9][0-9]*$

12 非零的负整数:^\-[1-9][]0-9"*$ 或 ^-[1-9]\d*$

13 非负整数:^\d+$ 或 ^[1-9]\d*|0$

14 非正整数:^-[1-9]\d*|0$ 或 ^((-\d+)|(0+))$

15 非负浮点数:^\d+(\.\d+)?$ 或 ^[1-9]\d*\.\d*|0\.\d*[1-9]\d*|0?\.0+|0$

16 非正浮点数:^((-\d+(\.\d+)?)|(0+(\.0+)?))$ 或 ^(-([1-9]\d*\.\d*|0\.\d*[1-9]\d*))|0?\.0+|0$

17 正浮点数:^[1-9]\d*\.\d*|0\.\d*[1-9]\d*$ 或 ^(([0-9]+\.[0-9]*[1-9][0-9]*)|([0-9]*[1-9][0-9]*\.[0-9]+)|([0-9]*[1-9][0-9]*))$

18 负浮点数:^-([1-9]\d*\.\d*|0\.\d*[1-9]\d*)$ 或 ^(-(([0-9]+\.[0-9]*[1-9][0-9]*)|([0-9]*[1-9][0-9]*\.[0-9]+)|([0-9]*[1-9][0-9]*)))$

19 浮点数:^(-?\d+)(\.\d+)?$ 或 ^-?([1-9]\d*\.\d*|0\.\d*[1-9]\d*|0?\.0+|0)$

二、校验字符的表达式

1 汉字:^[\u4e00-\u9fa5]{0,}$

2 英文和数字:^[A-Za-z0-9]+$ 或 ^[A-Za-z0-9]{4,40}$

3 长度为3-20的所有字符:^.{3,20}$

4 由26个英文字母组成的字符串:^[A-Za-z]+$

5 由26个大写英文字母组成的字符串:^[A-Z]+$

6 由26个小写英文字母组成的字符串:^[a-z]+$

7 由数字和26个英文字母组成的字符串:^[A-Za-z0-9]+$

8 由数字、26个英文字母或者下划线组成的字符串:^\w+$ 或 ^\w{3,20}$

9 中文、英文、数字包括下划线:^[\u4E00-\u9FA5A-Za-z0-9_]+$

10 中文、英文、数字但不包括下划线等符号:^[\u4E00-\u9FA5A-Za-z0-9]+$ 或 ^[\u4E00-\u9FA5A-Za-z0-9]{2,20}$

11 可以输入含有^%&',;=?$\"等字符:[^%&',;=?$\x22]+

12 禁止输入含有~的字符:[^~\x22]+

三、特殊需求表达式

1 Email地址:^\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*$

2 域名:[a-zA-Z0-9][-a-zA-Z0-9]{0,62}(/.[a-zA-Z0-9][-a-zA-Z0-9]{0,62})+/.?

3 InternetURL:[a-zA-z]+://[^\s]* 或 ^http://([\w-]+\.)+[\w-]+(/[\w-./?%&=]*)?$

4 手机号码:^(13[0-9]|14[5|7]|15[0|1|2|3|5|6|7|8|9]|18[0|1|2|3|5|6|7|8|9])\d{8}$

5 电话号码("XXX-XXXXXXX"、"XXXX-XXXXXXXX"、"XXX-XXXXXXX"、"XXX-XXXXXXXX"、"XXXXXXX"和"XXXXXXXX):^(\(\d{3,4}-)|\d{3.4}-)?\d{7,8}$

6 国内电话号码(0511-4405222、021-87888822):\d{3}-\d{8}|\d{4}-\d{7}

7 身份证号(15位、18位数字):^\d{15}|\d{18}$

8 短身份证号码(数字、字母x结尾):^([0-9]){7,18}(x|X)?$ 或 ^\d{8,18}|[0-9x]{8,18}|[0-9X]{8,18}?$

9 帐号是否合法(字母开头,允许5-16字节,允许字母数字下划线):^[a-zA-Z][a-zA-Z0-9_]{4,15}$

10 密码(以字母开头,长度在6~18之间,只能包含字母、数字和下划线):^[a-zA-Z]\w{5,17}$

11 强密码(必须包含大小写字母和数字的组合,不能使用特殊字符,长度在8-10之间):^(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{8,10}$

12 日期格式:^\d{4}-\d{1,2}-\d{1,2}

13 一年的12个月(01~09和1~12):^(0?[1-9]|1[0-2])$

14 一个月的31天(01~09和1~31):^((0?[1-9])|((1|2)[0-9])|30|31)$

15 钱的输入格式:

16 1.有四种钱的表示形式我们可以接受:"10000.00" 和 "10,000.00", 和没有 "分" 的 "10000" 和 "10,000":^[1-9][0-9]*$

17 2.这表示任意一个不以0开头的数字,但是,这也意味着一个字符"0"不通过,所以我们采用下面的形式:^(0|[1-9][0-9]*)$

18 3.一个0或者一个不以0开头的数字.我们还可以允许开头有一个负号:^(0|-?[1-9][0-9]*)$

19 4.这表示一个0或者一个可能为负的开头不为0的数字.让用户以0开头好了.把负号的也去掉,因为钱总不能是负的吧.下面我们要加的是说明可能的小数部分:^[0-9]+(.[0-9]+)?$

20 5.必须说明的是,小数点后面至少应该有1位数,所以"10."是不通过的,但是 "10" 和 "10.2" 是通过的:^[0-9]+(.[0-9]{2})?$

21 6.这样我们规定小数点后面必须有两位,如果你认为太苛刻了,可以这样:^[0-9]+(.[0-9]{1,2})?$

22 7.这样就允许用户只写一位小数.下面我们该考虑数字中的逗号了,我们可以这样:^[0-9]{1,3}(,[0-9]{3})*(.[0-9]{1,2})?$

23 8.1到3个数字,后面跟着任意个 逗号+3个数字,逗号成为可选,而不是必须:^([0-9]+|[0-9]{1,3}(,[0-9]{3})*)(.[0-9]{1,2})?$

24 备注:这就是最终结果了,别忘了"+"可以用"*"替代如果你觉得空字符串也可以接受的话(奇怪,为什么?)最后,别忘了在用函数时去掉去掉那个反斜杠,一般的错误都在这里

25 xml文件:^([a-zA-Z]+-?)+[a-zA-Z0-9]+\\.[x|X][m|M][l|L]$

26 中文字符的正则表达式:[\u4e00-\u9fa5]

27 双字节字符:[^\x00-\xff] (包括汉字在内,可以用来计算字符串的长度(一个双字节字符长度计2,ASCII字符计1))

28 空白行的正则表达式:\n\s*\r (可以用来删除空白行)

29 HTML标记的正则表达式:<(\S*?)[^>]*>.*?</\1>|<.*? /> (网上流传的版本太糟糕,上面这个也仅仅能部分,对于复杂的嵌套标记依旧无能为力)

30 首尾空白字符的正则表达式:^\s*|\s*$或(^\s*)|(\s*$) (可以用来删除行首行尾的空白字符(包括空格、制表符、换页符等等),非常有用的表达式)

31 腾讯QQ号:[1-9][0-9]{4,} (腾讯QQ号从10000开始)

32 中国邮政编码:[1-9]\d{5}(?!\d) (中国邮政编码为6位数字)

33 IP地址:\d+\.\d+\.\d+\.\d+ (提取IP地址时有用)

34 IP地址:((?:(?:25[0-5]|2[0-4]\\d|[01]?\\d?\\d)\\.){3}(?:25[0-5]|2[0-4]\\d|[01]?\\d?\\d))

链接:http://www.jb51.net/article/77687.htm

10 种机器学习算法的Python 实现

线性回归

#Import Library
#Import other necessary libraries like pandas, numpy...
from sklearn import linear_model
#Load Train and Test datasets
#Identify feature and response variable(s) and values must be numeric and numpy arrays
x_train=input_variables_values_training_datasets
y_train=target_variables_values_training_datasets
x_test=input_variables_values_test_datasets
# Create linear regression object
linear = linear_model.LinearRegression()
# Train the model using the training sets and check score
linear.fit(x_train, y_train)
linear.score(x_train, y_train) 
#Equation coefficient and Intercept
print('Coefficient: n', linear.coef_)
print('Intercept: n', linear.intercept_)
#Predict Output
predicted= linear.predict(x_test)


逻辑回归

#Import Library
from sklearn.linear_model import LogisticRegression
#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset
# Create logistic regression object
model = LogisticRegression()# Train the model using the training sets and check score
model.fit(X, y)
model.score(X, y)#Equation coefficient and Intercept
print('Coefficient: n', model.coef_)
print('Intercept: n', model.intercept_)#Predict Output
predicted= model.predict(x_test)

决策树

#Import Library
#Import other necessary libraries like pandas, numpy...
from sklearn import tree#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset
# Create tree object 
model = tree.DecisionTreeClassifier(criterion='gini') # for classification, here you can change the algorithm as gini or entropy (information gain) by default it is gini  # model = tree.DecisionTreeRegressor() for regression
# Train the model using the training sets and check score
model.fit(X, y)
model.score(X, y)#Predict Output
predicted= model.predict(x_test)

支持向量机

#Import Library
from sklearn import svm#Assumed you have, X (predic
tor) and Y (target) for training data set and x_test(predictor) of test_dataset
# Create SVM classification object 
model = svm.svc() # there is various option associated with it, this is simple for classification. You can refer link, for mo# re detail.
# Train the model using the training sets and check score
model.fit(X, y)
model.score(X, y)#Predict Output
predicted= model.predict(x_test)



朴素贝叶斯

#Import Library
from sklearn.naive_bayes import GaussianNB#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset
# Create SVM classification object model = GaussianNB() # there is other distribution for multinomial classes like Bernoulli Naive Bayes, Refer link
# Train the model using the training sets and check score
model.fit(X, y)#Predict Output
predicted= model.predict(x_test)

KNN(K – 最近邻算法)

#Import Library
from sklearn.neighbors import KNeighborsClassifier#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset
# Create KNeighbors classifier object model 
KNeighborsClassifier(n_neighbors=6) # default value for n_neighbors is 5# Train the model using the training sets and check score
model.fit(X, y)#Predict Output
predicted= model.predict(x_test)

K 均值算法

#Import Library
from sklearn.cluster import KMeans#Assumed you have, X (attributes) for training data set and x_test(attributes) of test_dataset
# Create KNeighbors classifier object model 
k_means = KMeans(n_clusters=3, random_state=0)# Train the model using the training sets and check score
model.fit(X)#Predict Output
predicted= model.predict(x_test)

随机森林

#Import Library
from sklearn.ensemble import RandomForestClassifier#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset
# Create Random Forest object
model= RandomForestClassifier()# Train the model using the training sets and check score
model.fit(X, y)#Predict Output
predicted= model.predict(x_test)

降维算法

#Import Library
from sklearn import decomposition#Assumed you have training and test data set as train and test
# Create PCA obeject pca= decomposition.PCA(n_components=k) #default value of k =min(n_sample, n_features)
# For Factor analysis
#fa= decomposition.FactorAnalysis()
# Reduced the dimension of training dataset using PCA
train_reduced = pca.fit_transform(train)#Reduced the dimension of test dataset
test_reduced = pca.transform(test)#For more detail on this, please refer  this link.

Gradient Boosting 和 AdaBoost 算法



#Import Library
from sklearn.ensemble import GradientBoostingClassifier#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset
# Create Gradient Boosting Classifier object
model= GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0)# Train the model using the training sets and check score
model.fit(X, y)#Predict Output
predicted= model.predict(x_test)

链接:http://blog.jobbole.com/92021/


更多cheatsheet请见:https://www.cheatography.com/



这篇关于常用cheat sheet 整理(正则、git、jquery、机器学习等等)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/801871

相关文章

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

golang中reflect包的常用方法

《golang中reflect包的常用方法》Go反射reflect包提供类型和值方法,用于获取类型信息、访问字段、调用方法等,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录reflect包方法总结类型 (Type) 方法值 (Value) 方法reflect包方法总结

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

一文详解Git中分支本地和远程删除的方法

《一文详解Git中分支本地和远程删除的方法》在使用Git进行版本控制的过程中,我们会创建多个分支来进行不同功能的开发,这就容易涉及到如何正确地删除本地分支和远程分支,下面我们就来看看相关的实现方法吧... 目录技术背景实现步骤删除本地分支删除远程www.chinasem.cn分支同步删除信息到其他机器示例步骤

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

前端如何通过nginx访问本地端口

《前端如何通过nginx访问本地端口》:本文主要介绍前端如何通过nginx访问本地端口的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、nginx安装1、下载(1)下载地址(2)系统选择(3)版本选择2、安装部署(1)解压(2)配置文件修改(3)启动(4)