STM32CubeMX 配置 STM32F103 工程:通过DAC输出正弦波

2024-03-12 01:12

本文主要是介绍STM32CubeMX 配置 STM32F103 工程:通过DAC输出正弦波,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明:STM32CubeMX 配置 STM32F103 工程,通过DAC输出正弦波,参考代码可自动计算频率,自动计算正弦数据。

先参考这篇文章配置时钟、工程输出的设置:

STM32CubeMX 配置 STM32F103 工程:通过DAC生成三角波、噪声-CSDN博客

1.配置DAC

2.配置DMA

3.配置DAC的触发TIM

4.输出设置

5.生成代码

6.打开工程

7.正弦数据生成代码

#if 0//正弦信号#define POINTS 256#define SCALE_FACTOR (4095.0 / 2)  // 缩放因子,将[-1, 1]映射到[0, 4095]#define OFFSET 2048                // 偏移量,将[0, 4095]调整到中心#define M_PI  3.14159265uint16_t sine_wave_u16[POINTS];int sine_wave[POINTS];void sina(void){for (int i = 0; i < POINTS; i++){double x = ((double) i / (POINTS - 1)) * 2 * M_PI;  // 0到2π之间的值double sin_value = sin(x);  // 计算正弦值sine_wave[i] = (int) (SCALE_FACTOR * sin_value + OFFSET);  // 缩放和平移正弦值到0~4095范围sine_wave_u16[i] = (uint16_t)sine_wave[i];}}#else#define POINTS 256                             //正弦数据点数#define MIN_VALUE 100                          //正弦数据最小值#define MAX_VALUE 4000                         //正弦数据最大值 #define SCALE ((MAX_VALUE - MIN_VALUE) / 2.0)  #define OFFSET MIN_VALUE  #define M_PI  3.14159265uint16_t sine_wave_u16[POINTS];int sine_wave[POINTS]; void sina(void) {  for (int i = 0; i < POINTS; i++) {  double x = ((double)i / (POINTS - 1)) * 2 * M_PI;  // 将索引转换为0到2π之间的值  double sin_value = sin(x);  // 计算正弦值  sine_wave[i] = (int)((sin_value + 1) * SCALE + OFFSET);  // 缩放和平移正弦值到100~4000范围 sine_wave_u16[i] = (uint16_t)sine_wave[i];	}  }#endif

8.在main.c函数中添加定时器、DAC启动代码

/* USER CODE BEGIN Header */
/********************************************************************************* @file           : main.c* @brief          : Main program body******************************************************************************* @attention** Copyright (c) 2024 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "dac.h"
#include "dma.h"
#include "tim.h"
#include "gpio.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "math.h"
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD *//* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD *//* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*//* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t sin_data_updata = 0;
#if 0//正弦信号#define POINTS 256#define SCALE_FACTOR (4095.0 / 2)  // 缩放因子,将[-1, 1]映射到[0, 4095]#define OFFSET 2048                // 偏移量,将[0, 4095]调整到中心#define M_PI  3.14159265uint16_t sine_wave_u16[POINTS];int sine_wave[POINTS];void sina(void){for (int i = 0; i < POINTS; i++){double x = ((double) i / (POINTS - 1)) * 2 * M_PI;  // 0到2π之间的值double sin_value = sin(x);  // 计算正弦值sine_wave[i] = (int) (SCALE_FACTOR * sin_value + OFFSET);  // 缩放和平移正弦值到0~4095范围sine_wave_u16[i] = (uint16_t)sine_wave[i];}}#else#define POINTS 256                             //正弦数据点数#define MIN_VALUE 100                          //正弦数据最小值#define MAX_VALUE 4000                         //正弦数据最大值 #define SCALE ((MAX_VALUE - MIN_VALUE) / 2.0)  #define OFFSET MIN_VALUE  #define M_PI  3.14159265uint16_t sine_wave_u16[POINTS];int sine_wave[POINTS]; void sina(void) {  for (int i = 0; i < POINTS; i++) {  double x = ((double)i / (POINTS - 1)) * 2 * M_PI;  // 将索引转换为0到2π之间的值  double sin_value = sin(x);  // 计算正弦值  sine_wave[i] = (int)((sin_value + 1) * SCALE + OFFSET);  // 缩放和平移正弦值到100~4000范围 sine_wave_u16[i] = (uint16_t)sine_wave[i];	}  }#endif/* USER CODE END 0 *//*** @brief  The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_DMA_Init();MX_DAC_Init();MX_TIM2_Init();/* USER CODE BEGIN 2 */sina();  //正选信号数据初始化HAL_TIM_Base_Start(&htim2);//HAL_DAC_Start(&hdac,DAC_CHANNEL_1);HAL_DAC_Start_DMA(&hdac, DAC_CHANNEL_1, (uint32_t *)sine_wave_u16, POINTS, DAC_ALIGN_12B_R);/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE */if(sin_data_updata){sina();}/* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;RCC_OscInitStruct.HSIState = RCC_HSI_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//*** @brief  This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef  USE_FULL_ASSERT
/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

9.TIM文件中添加频率自动计算代码

/* USER CODE BEGIN Header */
/********************************************************************************* @file    tim.c* @brief   This file provides code for the configuration*          of the TIM instances.******************************************************************************* @attention** Copyright (c) 2024 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "tim.h"/* USER CODE BEGIN 0 */
uint16_t user_hz = 1000;           //用户自定义频率 单位:hz
uint16_t get_Period(uint16_t hz)   //定时器 Period 计算
{return (72000000/(256*hz) - 1);
}
/* USER CODE END 0 */TIM_HandleTypeDef htim2;/* TIM2 init function */
void MX_TIM2_Init(void)
{/* USER CODE BEGIN TIM2_Init 0 *//* USER CODE END TIM2_Init 0 */TIM_ClockConfigTypeDef sClockSourceConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};/* USER CODE BEGIN TIM2_Init 1 */uint16_t user_Period = get_Period(user_hz);/* USER CODE END TIM2_Init 1 */htim2.Instance = TIM2;htim2.Init.Prescaler = 0;htim2.Init.CounterMode = TIM_COUNTERMODE_UP;htim2.Init.Period = user_Period;htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;if (HAL_TIM_Base_Init(&htim2) != HAL_OK){Error_Handler();}sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK){Error_Handler();}sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK){Error_Handler();}/* USER CODE BEGIN TIM2_Init 2 *//* USER CODE END TIM2_Init 2 */}void HAL_TIM_Base_MspInit(TIM_HandleTypeDef* tim_baseHandle)
{if(tim_baseHandle->Instance==TIM2){/* USER CODE BEGIN TIM2_MspInit 0 *//* USER CODE END TIM2_MspInit 0 *//* TIM2 clock enable */__HAL_RCC_TIM2_CLK_ENABLE();/* USER CODE BEGIN TIM2_MspInit 1 *//* USER CODE END TIM2_MspInit 1 */}
}void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef* tim_baseHandle)
{if(tim_baseHandle->Instance==TIM2){/* USER CODE BEGIN TIM2_MspDeInit 0 *//* USER CODE END TIM2_MspDeInit 0 *//* Peripheral clock disable */__HAL_RCC_TIM2_CLK_DISABLE();/* USER CODE BEGIN TIM2_MspDeInit 1 *//* USER CODE END TIM2_MspDeInit 1 */}
}/* USER CODE BEGIN 1 *//* USER CODE END 1 */

9.输出波形

这篇关于STM32CubeMX 配置 STM32F103 工程:通过DAC输出正弦波的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/799685

相关文章

IDEA中配置Tomcat全过程

《IDEA中配置Tomcat全过程》文章介绍了在IDEA中配置Tomcat的六步流程,包括添加服务器、配置部署选项、设置应用服务器及启动,并提及Maven依赖可能因约定大于配置导致问题,需检查依赖版本... 目录第一步第二步第三步第四步第五步第六步总结第一步选择这个方框第二步选择+号,找到Tomca

Win10安装Maven与环境变量配置过程

《Win10安装Maven与环境变量配置过程》本文介绍Maven的安装与配置方法,涵盖下载、环境变量设置、本地仓库及镜像配置,指导如何在IDEA中正确配置Maven,适用于Java及其他语言项目的构建... 目录Maven 是什么?一、下载二、安装三、配置环境四、验证测试五、配置本地仓库六、配置国内镜像地址

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Debian系和Redhat系防火墙配置方式

《Debian系和Redhat系防火墙配置方式》文章对比了Debian系UFW和Redhat系Firewalld防火墙的安装、启用禁用、端口管理、规则查看及注意事项,强调SSH端口需开放、规则持久化,... 目录Debian系UFW防火墙1. 安装2. 启用与禁用3. 基本命令4. 注意事项5. 示例配置R

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,