【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别

本文主要是介绍【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 0. 前言
      • 1. 级联神经网络介绍
      • 2. MTCNN介绍
        • 2.1 MTCNN提出背景
        • 2.2 MTCNN结构
      • 3. MTCNN PyTorch实战
        • 3.1 facenet_pytorch库中的MTCNN
        • 3.2 识别图像数据
        • 3.3 人脸识别
        • 3.4 关键点定位

0. 前言

按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解及成果,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。

本文详细介绍MTCNN——多任务级联卷积神经网络的结构,并通过PyTorch实例说明MTCNN在人脸识别上的应用。

MTCNN的全称是Multi-Task Cascaded Convolutional Networks,它的缩写确实是MTCNN不是MTCCN.

1. 级联神经网络介绍

级联(cascaded)神经网络是一种人工神经网络的架构设计,它指的是多个神经网络层按照特定的方式连接起来,形成一个逐层处理信息的多层结构。在级联神经网络中,前一层次网络的输出作为后一层次网络的输入,这种结构允许在网络在深度方向上对复杂性和抽象层数进行增加

级联网络的重要特点是其动态构建特性,即可以从一个小规模的基本网络开始,并随着训练过程自动添加更多的隐藏单元或子网络,逐渐扩展成一个更深层次的结构,然后通过只针对新增部分数据进行训练来更新权重,即增量式学习(Incremental Learning)。这与传统的——构建完整模型后统一进行训练更新权重的思路非常不同。

使用传统的思路,如果发现我们的模型并不适用于待解决的任务,导致要调整模型结构时,通常会意味着之前的训练模型的工作全部白费了。

总结起来级联神经网络具有以下优点:

  1. 自适应结构:级联网络设计允许根据训练数据或学习过程动态调整网络结构,比如自动增加新的层或神经元,以适应更复杂的模式识别任务。

  2. 学习效率提升:可以通过增量学习或局部训练来加快学习速度,只针对新增加的部分进行训练优化。在某些情况下,级联网络可以采用非传统的权重更新机制,不需要在整个网络上执行全局误差反向传播算法。

  3. 鲁棒性和容错性:分层结构有助于提高系统的鲁棒性,单个层次的错误可能在后续层次中得到修正。

2. MTCNN介绍

2.1 MTCNN提出背景

MTCNN是Kaipeng Zhang等人在论文——Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks中提出的,其宗旨是通过多任务级联CNN解决两个问题:人脸检测(找出图像中人脸的位置和边界框)和人脸对齐(精确定位面部特征点)。

2.2 MTCNN结构

MTCNN的构建思路可以简单分为下面几个步骤:
在这里插入图片描述

  • 准备步骤:对图像进行缩放,建立图像金字塔;
  • 第一步Proposal-Net:快速选出若干候选框,为下一步准备;
  • 第二步Refine-Net:对第一步的众多候选框进行精选,留下置信度大的候选框;
  • 第三步Output-Net:输出最终bounding box、人脸关键特征定位和置信度。

详细来说P-Net、R-Net和O-Net的结构如下:在这里插入图片描述
通过Netron可以看到facenet_pytorch库中的MTCNN的结构及详细参数如下:
请添加图片描述

  1. P-Net (Proposal Network):

    • 输入是原始图像。
    • 首先通过一个卷积层(Conv2d)将3通道的输入图像转换为10通道特征图,使用3x3的卷积核(kernel_size=(3, 3))。
    • 紧接着使用PReLU激活函数(prelu1)进行非线性变换。
    • 使用最大池化层(MaxPool2d)下采样特征图(pool1),步长为2。
    • 再经过两个卷积层(Conv2d)提取更深层次的特征,并分别用PReLU激活函数(prelu2和prelu3)进行非线性处理。
    • 最后通过两个1x1卷积层(Conv2d)生成两个输出:一个是softmax4_1用于预测每个像素是否为人脸的概率分布,另一个是conv4_2用于回归bounding box的位置信息。
  2. R-Net (Refine Network):

    • 输入是P-Net的候选区域。
    • 类似于P-Net,R-Net也包含多个卷积层与激活函数,以及池化层进行特征提取和下采样。
    • 在最后,通过两个全连接层(Dense或Linear)生成两个输出:softmax5_1用于判断候选框内是否为人脸并给出置信度,dense5_2用于进一步细化人脸框的位置。
  3. O-Net (Output Network):

    • 输入同样是前一级网络(R-Net)筛选后的候选区域。
    • O-Net具有更多的卷积层以获取更精细的特征表达,同样在最后阶段通过三个全连接层生成三个输出:softmax6_1用于人脸分类,dense6_2用于人脸框回归精修,dense6_3用于估计关键点(如眼睛、嘴巴等)的位置。

整个MTCNN模型通过逐步筛选和优化候选区域,在不同尺度上定位和识别图像中的人脸,从而实现高效准确的人脸检测。

3. MTCNN PyTorch实战

3.1 facenet_pytorch库中的MTCNN

facenet_pytorch库中的MTCNN类是一个用于人脸检测的多任务级联卷积神经网络模型实现。直接使用MTCNN类的最大好处就是该模型已经训练好,可以拿来即用,其初始化时接受多个参数,以下是对这些参数的详细解释:

  1. image_size(默认值:160):输出图像的大小(像素),图像会调整为正方形。

  2. margin(默认值:0):在最终图像上添加到边界框的边距(以像素为单位)。需要注意的是,与davidsandberg/facenet库中的应用方式稍有不同,该库在调整原始图像大小之前就对原始图像应用了边距,导致边距与原始图像大小相关(这是davidsandberg/facenet的一个bug)。

  3. min_face_size(默认值:20):要搜索的人脸的最小尺寸。

  4. thresholds(默认值:[0.6, 0.7, 0.7]):MTCNN人脸检测阈值列表,分别对应P-Net、R-Net和O-Net三个阶段的阈值。

  5. factor(默认值:0.709):用于创建人脸大小缩放金字塔的比例因子。

  6. post_process(默认值:True):是否在返回前对图像张量进行后处理。

  7. select_largest(默认值:True):如果检测到多个人脸,是否选择面积最大的一个返回。若设为False,则选择概率最高的人脸返回。

  8. selection_method(默认值:None):指定使用哪种启发式方法进行选择,如果设置此参数将覆盖select_largest

    • "probability":选择概率最高的。
    • "largest":选择面积最大的框。
    • "largest_over_threshold":选择超过一定概率的最大框。
    • "center_weighted_size":基于框大小减去离图像中心加权距离平方后的结果进行选择。
  9. keep_all(默认值:False):如果设为True,则返回所有检测到的人脸,并按照select_largest参数设定的顺序排列。如果指定了保存路径,第一张人脸将被保存至该路径,其余人脸将依次保存为<save_path>1, <save_path>2等。

  10. device(默认值:None):运行神经网络前向传递时所使用的设备。图像张量和模型会在前向传递前复制到这个设备上。

3.2 识别图像数据

这块没有特殊要求,随便去网上下载,以下是我自己的识别对象数据:
在这里插入图片描述

3.3 人脸识别
  • 代码
from facenet_pytorch import MTCNN
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
import osdevice = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('the device is:{}'.format(device))model = MTCNN(image_size=160, margin=0, min_face_size=10,thresholds=[0.7,0.7,0.7],factor=0.7, post_process=True, device=device)
path = os.path.abspath('face_img')  #在face_img文件夹下面还要再加一个class_folder文件夹
dataset = datasets.ImageFolder(path)
imgs_list = list(sorted(os.listdir(os.path.join(path,'class_folder'))))def collate_fn(x):return x[0]loader = DataLoader(dataset, collate_fn = collate_fn, num_workers=0)
index = 0
#detected_faces = []for pic,_ in loader:aligned, confidence = model(pic , return_prob=True)if confidence is not None:print('Confidence of {} containing human face is {:.8f}'.format(imgs_list[index], confidence))detected_faces.append(aligned)else:print('No human face detected in {}'.format(imgs_list[index]))index += 1# 以下是人脸对齐的还原实现
#face_numpy = (detected_faces[0] + 1) * 127.5  # 由于是 [-1, 1] 范围,将其映射到 [0, 255]
#face_numpy = face_numpy.numpy().astype(np.uint8)
#face_image = Image.fromarray(face_numpy.transpose(1, 2, 0)) # 将 Numpy 数组转为 PIL 图像格式,并注意调整通道顺序为 (H, W, C)#plt.imshow(face_image)
#plt.show()
  • 输出
Confidence of art.png containing human face is 0.99512947
No human face detected in ironman.png
Confidence of man.png containing human face is 0.99643928
No human face detected in ogre.png
Confidence of thanos.png containing human face is 0.96726525
Confidence of woman.png containing human face is 0.99991846

可见MTCNN不认为钢铁侠和食人魔魔法师算“人脸”。MTCNN的输出有2部分:

  1. 对齐后的人脸张量:其范围是[-1, 1],可以将其线性还原到[0, 255]并输出对其后的人脸,例如下图:在这里插入图片描述
  2. 包含人脸的置信度:即上面的0.99512947等置信度数值。
3.4 关键点定位

也可以使用mtcnn.detect()得到人脸得关键点(眼睛、鼻子、嘴角)定位,代码如下:

from facenet_pytorch import MTCNN
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
import os
import numpy
import matplotlib
import matplotlib.pyplot as pltdevice = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('the device is:{}'.format(device))model = MTCNN(image_size=160, margin=0, min_face_size=10,thresholds=[0.7,0.7,0.7],factor=0.7, post_process=True, device=device)path = os.path.abspath('face_img')  #在face_img文件夹下面还要再加一个class_folder文件夹
dataset = datasets.ImageFolder(path)
imgs_list = list(sorted(os.listdir(os.path.join(path,'class_folder'))))def collate_fn(x):return x[0]loader = DataLoader(dataset, collate_fn = collate_fn, num_workers=0)
index = 0
detected_faces = []for pic,_ in loader:aligned, confidence = model(pic , return_prob=True)if confidence is not None:print('Confidence of {} containing human face is {:.8f}'.format(imgs_list[index], confidence))detected_faces.append(aligned)boxes, probs, points = model.detect(pic, landmarks=True)points = points.squeeze(0)for x,y in points:plt.scatter(x,y,s=10,c='r')plt.imshow(pic)plt.savefig('{}_aligned.jpg'.format(imgs_list[index]))plt.close()else:print('No human face detected in {}'.format(imgs_list[index]))index += 1

最终保存的图像为:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

可以看出MTCNN的关键点定位也是很准确的。上面代码的boxs即为人脸边界框,这里不再画出效果。

这篇关于【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/797836

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.