文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《含海上风电制氢的综合能源系统分布鲁棒低碳优化运行》

本文主要是介绍文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《含海上风电制氢的综合能源系统分布鲁棒低碳优化运行》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇文章标题表明了它将讨论的主题是一个综合能源系统,其中包括海上风电和制氢技术。文章的重点是关于如何对这样一个复杂系统进行优化运行,以实现低碳目标,并且保持对各种可能的变化或不确定性具有鲁棒性。在这个背景下,"分布鲁棒低碳优化运行"指的是针对系统中分布式能源资源的优化配置和管理,同时考虑到可能出现的各种不确定性和变化情况,以实现系统的低碳运行目标。文章可能会讨论优化方法、算法、技术以及相关政策和经济因素,以实现这一目标。

摘要:海上风电制氢技术是实现海上风电完全消纳及综合能源系统低碳经济运行的有效手段。针对海上风电出力不确定性高难以完全消纳,以及氢能利用单一造成系统经济性低和碳排放高等问题,本文提出了一种基于数据驱动分布鲁棒和凸松弛技术的含海上风电制氢综合能源系统低碳优化运行策略。首先,通过研究海上风电制氢及其输氢系统的运行机理,建立了海上风电制氢系统及氢能多元转换与利用的数学模型;其次,构造了基于Wasserstein距离的源荷不确定性模型,并以综合运行成本最低为目标。此外,本文采用强对偶理论,将原始模型转换为混合整数线性规划模型,实现了模型的快速精确求解。最后,对IEEE-33节点电网和23节点热网组成的综合能源系统进行仿真分析,算例结果表明,所提模型能够有效提高系统的风电消纳水平和能源利用效率,具有显著的低碳经济效益。

这段摘要介绍了一项关于海上风电制氢技术在综合能源系统中的应用研究。主要内容包括以下几个方面:

  1. 研究背景和动机: 海上风电制氢技术被认为是实现海上风电资源的充分利用和综合能源系统低碳经济运行的有效手段。然而,海上风电的不确定性和氢能利用的单一性给系统带来了一些挑战,如难以完全消纳风电输出以及系统经济性低和碳排放高等问题。

  2. 研究方法: 文章提出了一种基于数据驱动、分布鲁棒和凸松弛技术的低碳优化运行策略。首先,通过对海上风电制氢系统及氢能多元转换与利用的数学模型进行建立。其次,构建了基于Wasserstein距离的源荷不确定性模型,并以综合运行成本最低为优化目标。此外,采用了强对偶理论,将原始模型转换为混合整数线性规划模型,以实现模型的快速精确求解。

  3. 研究结果: 作者对IEEE-33节点电网和23节点热网组成的综合能源系统进行了仿真分析。结果显示,所提出的模型能够有效提高系统的风电消纳水平和能源利用效率,同时具有显著的低碳经济效益。

综合而言,这项研究针对海上风电制氢技术在综合能源系统中的应用提出了一种全面的优化运行策略,并通过仿真分析验证了其有效性和经济性。

关键词:    海上风电制氢;氢能多元利用;电热综合能源系统;凸松弛技术;分布鲁棒;

  1. 海上风电制氢: 指利用海上风能进行电解水制氢的技术。通过利用风能产生电力,然后将电力用于电解水,将水分解成氢气和氧气,从而实现氢气的生产。

  2. 氢能多元利用: 指将制得的氢气用于多种用途的技术。除了作为燃料进行燃烧外,氢气还可以用于燃料电池发电、工业生产、交通运输等领域,实现能源的多元化利用。

  3. 电热综合能源系统: 是指集成了电力系统和热能系统的综合能源系统。通过整合电力和热能,可以实现能源的高效利用和能量的互相转换,提高系统的能源利用效率。

  4. 凸松弛技术: 是一种数学优化技术,用于求解非凸优化问题。通过将原始非凸问题转化为凸问题,并在凸问题上进行松弛处理,从而简化问题的求解过程,得到接近最优解的结果。

  5. 分布鲁棒: 意味着系统具有对分布中各种不确定性和变化的鲁棒性。在能源系统中,分布鲁棒性指系统能够应对能源供给和需求之间的不确定性和变化,保持稳定运行和效率。

仿真算例:

首先,对考虑海上风电制氢和氢能多元利用的 区域电热综合能源系统低碳优化运行模型进行成 本验证。本文设置了四个场景:场景1:海上风电 场直接接入综合能源系统的低碳运行;场景2:海 上风电场通过制氢接入综合能源系统,但未考虑氢 能多元利用的低碳运行;场景3:考虑海上风电制 氢和氢能多元利用的综合能源系统,但未考虑源荷 不确定性的低碳运行;场景4:考虑海上风电制氢 和氢能多元利用的综合能源系统,同时考虑源荷不 确定性的低碳运行。此外关于海上风电传输投资成 本的比较在较多文献中已经进行了详细的阐述,本文就不再进行分析

仿真程序复现思路:

要复现这篇文章中描述的仿真实验,需要遵循以下步骤:

模型搭建: 首先,需要搭建区域电热综合能源系统低碳优化运行模型。这个模型需要包括海上风电场、制氢系统、综合能源系统以及电热负荷等组成部分,并且考虑到能源流动、转化和利用的各种约束条件。

  1. 成本验证设置: 根据描述,设置四个不同的场景来验证模型的成本。具体来说,包括海上风电场直接接入综合能源系统、海上风电场通过制氢接入综合能源系统但未考虑多元利用、考虑多元利用但未考虑源荷不确定性、考虑多元利用且考虑源荷不确定性等情况。

  2. 算法选择: 为了进行低碳优化运行模型的成本验证,你可能需要选择合适的优化算法。根据描述,可能会涉及到凸松弛技术以及其他相关的算法来解决非凸优化问题。

  3. 参数设置: 设置好每个场景的参数,包括海上风电场的风能利用率、制氢系统的效率、综合能源系统的能源转换效率等等。

  4. 仿真运行: 使用程序语言进行仿真运行。根据每个场景的设定,运行模型并记录相应的成本数据。

这里给出一个简单示例,展示如何使用 Python 进行模型的搭建和仿真运行。这里只是一个简单的示例,实际情况可能更加复杂,需要根据具体情况进行调整和完善。

import numpy as npclass EnergySystem:def __init__(self, wind_power, hydrogen_production, utilization_factor):self.wind_power = wind_powerself.hydrogen_production = hydrogen_productionself.utilization_factor = utilization_factordef calculate_cost(self):# 假设成本计算方法为风电成本加上制氢成本wind_cost = self.wind_power * 50  # 假设风电成本为每单位50元hydrogen_cost = self.hydrogen_production * 100  # 假设制氢成本为每单位100元total_cost = wind_cost + hydrogen_costreturn total_costdef simulate_scenario(wind_direct_access, hydrogen_direct_access, multi_utilization, uncertainty):# 模拟参数设置wind_power = 1000  # 风电产能假设为1000单位hydrogen_production = 500  # 制氢产能假设为500单位utilization_factor = 0.8  # 综合能源利用系数假设为80%# 根据场景设置参数if wind_direct_access:wind_power_cost = EnergySystem(wind_power, 0, utilization_factor).calculate_cost()else:wind_power_cost = 0if hydrogen_direct_access:if multi_utilization:hydrogen_production_cost = EnergySystem(0, hydrogen_production, utilization_factor).calculate_cost()else:hydrogen_production_cost = EnergySystem(0, hydrogen_production, 1).calculate_cost()else:hydrogen_production_cost = 0# 考虑源荷不确定性if uncertainty:uncertainty_factor = np.random.uniform(0.9, 1.1)  # 假设源荷不确定性范围在0.9到1.1之间else:uncertainty_factor = 1# 计算总成本total_cost = wind_power_cost + hydrogen_production_costtotal_cost *= uncertainty_factor  # 考虑源荷不确定性return total_costdef main():num_scenarios = 4costs = np.zeros(num_scenarios)for i in range(num_scenarios):costs[i] = simulate_scenario(wind_direct_access=(i == 0),hydrogen_direct_access=(i in [1, 2, 3]),multi_utilization=(i in [2, 3]),uncertainty=(i in [3]))for i, cost in enumerate(costs):print(f"场景{i+1}成本: {cost}元")if __name__ == "__main__":main()

在上面的代码中,我定义了一个 EnergySystem 类来表示能源系统,并且给出了一个简单的 calculate_cost 方法来计算成本。然后,我定义了 simulate_scenario 函数来模拟每个场景的运行,并计算相应的成本。最后,在 main 函数中,我模拟了四个场景并输出了每个场景的成本。

这个示例代码中的参数、假设和计算方法都是简化的,实际情况可能更加复杂。你可以根据具体情况进行调整和扩展。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《含海上风电制氢的综合能源系统分布鲁棒低碳优化运行》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/797822

相关文章

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建