WA、UAR、F1和sklearn自带的函数

2024-03-11 11:30
文章标签 函数 自带 f1 sklearn wa uar

本文主要是介绍WA、UAR、F1和sklearn自带的函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多分类问题中常用的评价指标。

目录

1.WA(weighted accuracy)加权准确率

2.UAR(unweighted average recall)未加权平均召回率

3.F1分数

4.使用sklearn进行计算

5.适用场景

6.其他


1.WA(weighted accuracy)加权准确率

在多分类问题中,加权准确率(Weighted Accuracy)是一种考虑每个类别样本数量的准确率计算方式。对于样本不均衡的情况,该方式比较适用。其计算方式是将每个类别的准确率乘以该类别在总样本中的比例(权重),然后求和。

其实就是我们日常跑代码出来的acc

计算公式如下:

WA = \frac{\sum (TP_i) }{\sum (TP_i + FP_i + FN_i)}

其中,TP_i 是第 i 类的真正例数量,FP_i 是第 i 类的假正例数量,FN_i 是第 i 类的假反例数量。Σ 表示对所有类别求和。

2.UAR(unweighted average recall)未加权平均召回率

是一种性能评估指标,主要用于多分类问题。它表示各类别的平均召回率(Recall),在计算时,不对各类别进行加权。对于每个类别,召回率是该类别中真正被正确预测的样本数与该类别中所有样本数的比值。

UAR在评估一个分类器时,对每个类别都给予相同的重要性,而不考虑各类别的样本数量。这使得UAR在处理不平衡数据集时具有一定的优势,因为它不会受到数量较多的类别的影响。

计算公式如下:

UAR = \frac{1}{N}* \sum (Recall_i)

其中,Recall_i 是第 i 类的召回率,N 是类别的总数。

3.F1分数

F1分数是精确率(Precision)和召回率(Recall)的调和平均值。在多分类问题中,通常会计算每个类别的F1分数,然后取平均值作为总体的F1分数。平均方法可以是简单的算术平均(Macro-F1)(常用),也可以是根据每个类别的样本数量进行加权的平均(Weighted-F1)。

计算公式如下:

F1 = \frac{2 * Precision * Recall }{(Precision + Recall)}

4.使用sklearn进行计算

from sklearn.metrics import classification_report

使用👆导入的包,模型输出预测值y_pred和真实值y_test得到report如下:

report = classification_report(y_test, y_pred)
              precision    recall  f1-score   support0       0.89      0.80      0.84        101       0.60      0.75      0.67         82       0.92      0.85      0.88        13accuracy                           0.81        31macro avg       0.80      0.80      0.80        31
weighted avg       0.83      0.81      0.82        31

"macro avg"行表示,对于精度(precision),召回率(recall)和F1分数(f1-score),它们的未加权平均值分别是0.80、0.80和0.80。

"weighted avg"行表示,对于精度(precision),召回率(recall)和F1分数(f1-score),它们的加权平均值分别是0.83、0.81和0.82。加权平均是根据每个类别的样本数进行加权的,所以在这个案例中,类别2(有13个样本)的影响力大于类别0(10个样本)和类别1(8个样本)。

accuracy,可以视作每个类别的权重都一样的加权准确率。

5.适用场景

在类别不平衡的情况下,UAR 和 F1 分数通常比准确率更能反映模型的性能。

6.其他

精确率(Precision)和准确率(Accuracy)都是评价模型性能的重要指标,但是他们衡量的角度不同。

准确率(Accuracy):是所有预测正确的样本(真正例TP和真负例TN)占总样本数(TP+TN+FP+FN)的比例。它适用于正负样本比例相当的情况。在正负样本极度不均衡的情况下,准确率就没有太大的意义。

   Accuracy = (TP+TN) / (TP+TN+FP+FN)

精确率(Precision):是预测为正且预测正确的样本(真正例TP)占所有预测为正的样本数(TP+FP)的比例。它适用于关注假正例(FP,即将负例错误预测为正例)的情况。

   Precision = TP / (TP+FP)

举个例子,假设有100个邮件,其中95个是垃圾邮件,5个是正常邮件。如果模型预测所有邮件都是垃圾邮件,那么准确率是95%(因为正确预测了95个垃圾邮件),但是精确率就是0%(因为没有预测出任何正常邮件)。所以在不同的场景和需求下,我们需要根据实际情况选择合适的评价指标。

这篇关于WA、UAR、F1和sklearn自带的函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/797679

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

MySQL 字符串截取函数及用法详解

《MySQL字符串截取函数及用法详解》在MySQL中,字符串截取是常见的操作,主要用于从字符串中提取特定部分,MySQL提供了多种函数来实现这一功能,包括LEFT()、RIGHT()、SUBST... 目录mysql 字符串截取函数详解RIGHT(str, length):从右侧截取指定长度的字符SUBST