NUMA(Non-Uniform Memory Access)架构的介绍

2024-03-11 07:52

本文主要是介绍NUMA(Non-Uniform Memory Access)架构的介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. NUMA由来

最早的CPU是以下面这种形式访问内存的:

在这种架构中,所有的CPU都是通过一条总线来访问内存,我们把这种架构叫做SMP架构(Symmetric Multi-Processor),也就是对称多处理器结构。可以看出来,SMP架构有下面4个特点:

  • CPU和CPU以及CPU和内存都是通过一条总线连接起来
  • CPU都是平等的,没有主从关系
  • 所有的硬件资源都是共享的,即每个CPU都能访问到任何内存、外设等
  • 内存是统一结构和统一寻址的(UMA, Uniform Memory Architecture)

但是随着CPU多核技术的发展,一颗物理CPU中集成了越来越多的core,导致SMP架构的性能瓶颈越来越明显,因为所有的处理器都通过一条总线连接起来,因此随着处理器的增加,系统总线成为了系统瓶颈,另外,处理器和内存之间的通信延迟也较大。

为了解决SMP架构下不断增多的CPU Core导致的性能问题,NUMA架构应运而生,NUMA调整了CPU和内存的布局和访问关系,具体示意如下图:

在NUMA架构中,将CPU划分到多个NUMA Node中,每个Node有自己独立的内存空间和PCIE总线系统。各个CPU间通过QPI总线进行互通。

CPU访问不同类型节点内存的速度是不相同的,访问本地节点的速度最快,访问远端节点的速度最慢,即访问速度与节点的距离有关,距离越远,访问速度越慢,所以叫做非一致性内存访问,这个访问内存的距离我们称作Node Distance。

虽然NUMA很好的解决了SMP架构下CPU大量扩展带来的性能问题,但是其自身也存在着不足,当Node节点本地内存不足时,需要跨节点访问内存,节点间的访问速度慢,从而也会带来性能的下降。所以我们在编写应用程序时,要充分利用NUMA系统的这个特点,尽量的减少不同CPU模块之间的交互,避免远程访问资源,如果应用程序能有方法固定在一个CPU模块里,那么应用的性能将会有很大的提升。

2. NUMA架构下的CPU和内存分布

我们先厘清几个跟CPU有关的概念:

  • Socket:表示一颗物理 CPU 的封装(物理 CPU 插槽),简称插槽。为了避免将逻辑处理器和物理处理器混淆,Intel 将物理处理器称为插槽,Socket表示可以看得到的真实的CPU核 。
  • Core:物理 CPU 封装内的独立的一组程序执行的硬件单元,比如寄存器,计算单元等,Core表示的是在同一个物理核内逻辑层面的核。同一个物理CPU的多个Core,有自己独立的L1和L2 Cache,共享L3 Cache
  • Thread:使用超线程技术虚拟出来的逻辑 Core,需要 CPU 支持。为了便于区分,逻辑 Core 一般被写作 Processor。在具有 Intel 超线程技术的处理器上,每个内核可以具有两个逻辑处理器,这两个逻辑处理器共享大多数内核资源(如内存缓存和功能单元)。此类逻辑处理器通常称为 Thread 。超线程可以在一个逻辑核等待指令执行的间隔(等待从cache或内存中获取下一条指令),把时间片分配到另一个逻辑核。高速在这两个逻辑核之间切换,让应用程序感知不到这个间隔,误认为自己是独占了一个核。对于每个逻辑线程,拥有完整独立的寄存器集合和本地中断逻辑,共享执行单元和一二三级Cache,超线程技术可以带来20%~30%的性能提升。
  • Node:即NUMA Node,CPU+本地总线+内存=1 Node。

Socket、Core和Threads之间的关系示意如下:

在Linux系统中,可以用lscpu查看NUMA和CPU的对应关系:

从上图可以看到,这台机器,有两个Socket(每个Socket也就是一个物理CPU),每个Socket有4个Core,每个Core有2个线程(开启了超线程),所以共有2*4*2=16个vCore (virtual Core)。

使用numactl -H命令可以看到NUMA下的内存分布:

所以这台服务器上CPU和内存在NUMA下的分布如下:

NUMA架构下的CPU,先从逻辑Core开始编号,如果开启了超线程,就从Core总数的后面继续编号,例如上图中从cpu8开始之后的都是开启超线程之后的CPU线程。

需要注意的是,NUMA Node和socket并不一定是一对一的关系,在AMD的CPU中,可能更多见于NUMA Node比socket个数多(一般AMD的CPU的NUMA可以在BIOS中进行配置),而Intel的CPU中,NUMA Node可能比socket的个数还少。

参考链接:

什么是NUMA,我们为什么要了解NUMA - 知乎

这篇关于NUMA(Non-Uniform Memory Access)架构的介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/797155

相关文章

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

zookeeper端口说明及介绍

《zookeeper端口说明及介绍》:本文主要介绍zookeeper端口说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、zookeeper有三个端口(可以修改)aVNMqvZ二、3个端口的作用三、部署时注意总China编程结一、zookeeper有三个端口(可以

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

mysql中的服务器架构详解

《mysql中的服务器架构详解》:本文主要介绍mysql中的服务器架构,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、mysql服务器架构解释3、总结1、背景简单理解一下mysqphpl的服务器架构。2、mysjsql服务器架构解释mysql的架

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h