【神经网络与深度学习】深度神经网络(DNN)

2024-03-11 02:44
文章标签 学习 深度 神经网络 dnn

本文主要是介绍【神经网络与深度学习】深度神经网络(DNN),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

深度神经网络(Deep Neural Networks,DNN)是一种由多个隐藏层组成的神经网络模型。每个隐藏层由多个神经元组成,这些神经元通过权重和激活函数进行信息传递和计算。

深度神经网络通过多层的非线性变换,可以学习到更加抽象和复杂的特征表示。每一层都可以将输入数据转化为更高级的表示,从而更好地捕捉数据的特征和模式。通过不断叠加隐藏层,网络可以逐渐学习到更多的抽象特征,提高模型的表达能力。

深度神经网络在诸多领域中取得了重大突破和成功应用,如图像识别、语音识别、自然语言处理等。它能够处理大规模的数据,并具有强大的表示学习能力,能够自动提取和学习数据中的关键特征,从而实现更高水平的模式识别和预测能力。

然而,深度神经网络的训练也面临一些挑战,如梯度消失或梯度爆炸问题以及过拟合等。为了克服这些问题,出现了一些改进的深度神经网络结构和训练技巧,如卷积神经网络(CNN)、循环神经网络(RNN)、残差网络(ResNet)等。这些创新不断推动着深度神经网络的发展,并在各种领域中发挥着重要作用。

结构

神经网络层

首先通过图片来观察神经网络层的结构,第一张图是浅层神经网络,包括一个输入层,一个隐藏层和一个输出层。

  • 输入层:它所包含的神经元的个数等于单个实例所包含的特征数。只负责输入数据,没有激活函数。
  • 隐藏层:作用是提取特征,必须包含激活函数。
  • 输出层:它所包含的神经元的数目与标签的类别数有关,主要负责输出模型的预测值,它可以包含激活函数。

在这里插入图片描述

下图为深度神经网络,分为一个输出层,多个隐藏层和一个输出层。

在这里插入图片描述

神经元

神经元作为神经网络中最基本的单位,也有其独特的结构,如图所示,其中

  • x为输入,每一个连接上都有一个权重w,中间的节点为人工神经元节点;
  • δ是一个非线性变换,称为激活函数,目的是为了使人工神经元具有表示非线性关系的能力;
  • 参数b称之为偏置;output为人工神经元的输出。

在这里插入图片描述
公式如下:

在这里插入图片描述

激活函数

激活函数是神经网络中的一种非线性函数,作用于神经元的输入信号,将其转换为神经元的输出。激活函数在神经网络中起到了引入非线性变换的作用,增加了网络的表达能力。

激活函数的主要特点如下:

  • 非线性变换:激活函数对输入进行非线性变换,使得神经网络能够学习和表示非线性关系。如果没有激活函数,多个线性层堆叠起来的神经网络仍然只能表示线性关系。

  • 可微性:激活函数通常要求在大部分输入范围内是可导的,这是因为梯度下降等优化算法通常依赖于梯度的计算。可导的激活函数使得梯度可以传递并更新网络参数。

  • 非饱和性:一些激活函数具有非饱和性,即在输入较大或较小的情况下,能够保持较大的梯度,避免梯度消失问题。这有助于更好地传递误差信号和加速网络的收敛速度。

  • 映射范围:激活函数可以将输入信号映射到一定的输出范围内,如Sigmoid函数将输入映射到 (0, 1) 的范围内,而ReLU函数将负值映射为零。这有助于对输出进行限制或规范化。

常见的激活函数包括:

  1. Sigmoid函数:将输入映射到 (0, 1) 的范围内,具有平滑的非线性特性。
    在这里插入图片描述

  2. ReLU函数:在输入大于零时输出等于输入,小于零时输出为零,具有简单和高效的计算方式。
    在这里插入图片描述

  3. Tanh函数:将输入映射到 (-1, 1) 的范围内,形状与Sigmoid函数类似但对称。
    在这里插入图片描述

  4. Leaky ReLU函数:在输入小于零时引入一个小的斜率,避免了ReLU函数的部分问题。

  5. Softmax函数:用于多分类问题,在输出层将输入转化为概率分布。

三种激活函数的比较:
在这里插入图片描述

损失函数

损失函数是一个数学函数,用于衡量预测值与真实值之间的误差。它可以帮助我们确定模型的预测结果是否准确,并且可以用来评估模型的性能。

损失函数是深度学习中的一个关键因素,它可以帮助我们评估模型的性能并且用于调整模型的参数。选择合适的损失函数能够提高模型的性能,并有助于解决复杂的问题。

常见的损失函数:
在这里插入图片描述

内容来自视频:
深度神经网络的结构

这篇关于【神经网络与深度学习】深度神经网络(DNN)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/796356

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.