三阶导数在生活中应用

2024-03-10 19:04

本文主要是介绍三阶导数在生活中应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

“鲍威尔还表示,美联储将在某个时候放慢(利率)加息步伐”

这是参考三阶导数(贷款义务=基础,利率=一阶导数,利率变化=二阶导数,利率变化速度=三阶导数)。

是否还有其他有趣的例子,说明人们在日常生活中可能会遇到的高阶导数。

另一个生动的例子就是坐汽车,当人们坐汽车从A地到B地,那么位移就发生了变化,进一步地,人们坐在汽车上的感受就是,汽车启动、加速、平稳滑行、减速、停止等,这个过程中其实有如下一些变量

速度、加速度、加加速度(急动度)。。。

速度是位移的导数;加速度是速度的导数,是位移的二阶导数;急动度是加速度的导数,是速度的二阶导数,是位移的三阶导数,以此类推的话,一直有N阶导数。。。

//三阶导数的应用远不止如此,甚至到处都是。。。

“1972 年秋天,尼克松总统宣布通货膨胀率正在下降。这是现任总统第一次使用三次导数来推动他的连任。”

-- http://www.ams.org/notices/199610/page2.pdf

1972 年秋天,尼克松总统宣布通货膨胀率正在下降。 这是现任总统第一次使用三阶导数来推动他的连任。 大约五年前,我当地的报纸刊登了一篇关于心脏病死亡率趋势研究的文章。 将人口分为四种基因型,并将过去几十年中每种基因型的比率绘制在图表上,类似于此处所示的图表。 研究人员观察到,上方曲线的死亡率下降幅度更大,并假设医学研究歧视性地偏向它们所代表的人群。 然而,通过将数据拟合到一阶微分方程,我们发现这些图都是冷却定律类型微分方程的解,具有相同(或多或少)的系数。 因此,每个基因型的动态都是相同的,唯一的区别在于初始条件。 此外,每种基因型的稳态速率将是相同的。 因此,根本没有迹象表明存在歧视或遗传差异。 尼克松总统是在告诉我们经济正在好转吗? 他的听众是否明白事实上通货膨胀率仍在上升,因此经济仍在恶化? 有多少上述医学研究的读者在图表中发现了一致而非差异化动态的可能性? 这种滥用数学和科学的含义是什么?它是否会导致本期两篇文章中描述的“文化研究”? 当然,数学提供了创建和处理现代技术环境的工具。 我们确保公众理解这一点并指导学生使用这些工具,这是件好事。 数学还提供了创造、发展和测试新思想的技术,并设定了证明和客观性的标准,这在其他科学中很少能达到,在“现实生活”中则更难实现,但它提供了一个可以争取和反对的模型。 被测量。 但最重要的是,数学是一种结构,为观察者提供了一个框架,在此基础上进行健康、明智和明智的判断。 数据和信息从四面八方涌向我们,我们将利用它们作为明智决策的基础。 我们经常被告知这些决定应该是什么; 我们可以可靠地评估该建议吗? 如果我们不知道工具之间的关系,我们能知道选择什么工具吗? 我们对遗传学问题使用 t 检验是因为我们在其他地方看到它在遗传学中使用,还是因为我们在其他地方看到它在类似结构的问题上使用? 上下文无关的抽象数学的本质在于,它使我们能够灵活地在各种上下文中使用这些工具。 能够批判性地分析一个声称符合逻辑的论点,不受所涉及术语的负载含义的影响,这是知情民众的基本能力。 在缺乏上下文的情况下理解数学思想和过程可以将上下文从“现实生活”问题中移除,理解问题的结构,并选择正确的工具来使用。 在法学院,学生们研究百年前的案例,其争论与今天完全无关。 这样做是为了让学生了解法律的结构。 难道数学不应该这样呈现,至少在关键时刻,以便学生能够看到科学的结构吗? 也许有一天,当一位现任总统和医学研究人员进入数学大厦时,他们会知道自己身处哪个房间

原文参考:

I n the fall of 1972 President Nixon announced that the rate of increase of inflation was decreasing. This was the first time a sitting president used the third derivative to advance his case for reelection. About five years ago my local newspaper carried an article about research on trends in the mortality rate due to heart disease. The population was divided into four genotypes, and the rates for each genotype over the preceding several decades were plotted on a graph, something like the graph pictured here. The researchers observed that the rate of decrease of these death rates was greater for the upper curves, and postulated that medical research was discriminatorily skewed toward the populations they represent. However, by fitting the data to a first-order differential equation, one finds that these graphs are all solutions of a Law-of-Cooling type of differential equation, with the same (more or less) coefficients. The dynamics for each genotype are thus the same, the only difference being in the initial conditions; and further, the steady-state rate for each genotype will be the same. Thus, no indication at all of discrimination or of genetic distinction. Was President Nixon telling us that the economy was getting better? Did his listeners understand that in fact the inflation rate was still increasing and thus the economy still worsening? How many readers of the above medical research detected in the graph the possibility of consistent rather than differentiating dynamics? What are the implications of such abuse of mathematics and science, and does it lead to the “cultural studies” described in two articles in this issue? Certainly mathematics provides the tools for creating and dealing with the modern technological environment. It is good that we make sure the public understands this and that we instruct our students in the use of these tools. Mathematics also provides techniques for creating, developing, and testing new ideas and sets a standard for proof and objectivity which is rarely attainable in other sciences and less so in “real life”, but which provides the model to strive for and against which arguments can be measured. But, most important of all, mathematics is a structure providing observers with a framework upon which to base healthy, informed, and intelligent judgment. Data and information are slung about us from all directions, and we are to use them as a basis for informed decisions. Often we are told what those decisions should be; can we reliably evaluate that advice? Can we tell what tools to select if we do not know the relationships among our tools? Do we use a t-test on a genetics problem because we saw it used in genetics elsewhere or because we saw it used on a similarly structured problem elsewhere? The essence of context-free—abstract—mathematics is that it gives us the flexibility to use those tools in a variety of contexts. Ability to critically analyze an argument purported to be logical, free of the impact of the loaded meanings of the terms involved, is basic to an informed populace. Understanding mathematical ideas and procedures in the absence of context gives the power to remove the context from a “real-life” problem, understand the structure of the problem, and select the right tools to use. In law schools, students study hundred-year-old cases on contentions that have absolutely no relevance today. This is done so the students can see the structure of the law. Should not mathematics be so presented, at least at critical junctures, so that students can see the structure of science? Perhaps someday a sitting president and medical researchers will know what room they are in when they enter the edifice of mathematics 
 

这篇关于三阶导数在生活中应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/795214

相关文章

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

C#通过进程调用外部应用的实现示例

《C#通过进程调用外部应用的实现示例》本文主要介绍了C#通过进程调用外部应用的实现示例,以WINFORM应用程序为例,在C#应用程序中调用PYTHON程序,具有一定的参考价值,感兴趣的可以了解一下... 目录窗口程序类进程信息类 系统设置类 以WINFORM应用程序为例,在C#应用程序中调用python程序