Normalizer(归一化)和MinMaxScaler(最小-最大标准化)的区别详解

本文主要是介绍Normalizer(归一化)和MinMaxScaler(最小-最大标准化)的区别详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.Normalizer(归一化)(更加推荐使用)

优点:将每个样本向量的欧几里德长度缩放为1,适用于计算样本之间的相似性。
缺点:只对每个样本的特征进行缩放,不保留原始数据的分布形状。
公式:对于每个样本,公式为:x / ||x||,其中x是样本向量,||x||是x的欧几里德范数。

2.MinMaxScaler(最小-最大标准化)

优点:将数据缩放到指定的范围(通常是0到1之间),保留了原始数据的形式。适用于需要保留原始数据分布形状的算法。
缺点:受异常值的影响较大,对分布不均匀的数据集可能导致信息损失。
公式:对于每个特征,公式为:(x - min) / (max - min),其中x是特征值,min是特征的最小值,max是特征的最大值。

在这里插入图片描述

3.Normalizer和MinMaxScaler区别

Normalizer和MinMaxScaler是不同的数据标准化方法。

Normalizer是一种将每个样本向量的长度缩放为1的归一化方法,它逐个样本对特征向量进行归一化,使得每个样本的特征向量都具有相同的尺度。

MinMaxScaler是一种将特征缩放到指定范围(通常是0到1之间)的标准化方法。它通过对每个特征进行线性变换,将特征值缩放到指定的最小值和最大值之间。

这两种方法有相似之处,都可以将数据缩放到一定范围内,但是归一化和最小-最大标准化的方式和目的不同。

归一化(Normalizer)在每个样本上进行操作,主要是为了保持样本之间的向量方向或角度关系,使得样本之间的相似性或距离计算更具可比性。

最小-最大标准化(MinMaxScaler)在每个特征上进行操作,主要是为了将特征值缩放到指定的范围,保留特征之间的相对关系。

因此,虽然它们都属于数据标准化的方法,但实际应用中,选择使用归一化还是最小-最大标准化取决于数据的特点和具体任务的需求。

4.案例解释

当使用Normalizer进行归一化时,每个样本的特征向量都会被调整为单位范数(默认为L2范数)。假设我们有一个包含两个样本的数据集,每个样本有两个特征。数据集如下:

样本1: [2, 4]
样本2: [1, 3]

使用Normalizer进行归一化后,结果如下:

from sklearn.preprocessing import MinMaxScaler,StandardScaler,Normalizer,RobustScaler
>>> scaler_x = Normalizer()
>>> scaler_x.fit_transform(x)
array([[0.4472136 , 0.89442719],[0.31622777, 0.9486833 ]])
样本1归一化后: [0.447, 0.894]
样本2归一化后: [0.316, 0.949]

每个样本的特征向量都被缩放到单位长度。

而当使用MinMaxScaler进行最小-最大标准化时,特征值会被缩放到一个指定的范围(通常是0到1之间)。假设我们有相同的数据集:

样本1: [2, 4]
样本2: [1, 3]

使用MinMaxScaler进行最小-最大标准化,将特征值缩放到0到1之间,结果如下:

from sklearn.preprocessing import MinMaxScaler,StandardScaler,Normalizer,RobustScaler
>>> scaler_x = MinMaxScaler()
>>> import numpy as np
>>> x = np.array([[2,4],[1,3]])
>>> scaler_x.fit_transform(x)
array([[1., 1.],[0., 0.]])
样本1标准化后: [1, 1]
样本2标准化后: [0, 0]

特征值被缩放到指定的范围之间。

可以看到,Normalizer(归一化)通过调整每个样本的特征向量的长度来进行归一化,而MinMaxScaler(最小-最大标准化)通过线性变换将特征值缩放到指定的范围内。在这个例子中,归一化操作将样本1归一化后的特征向量缩放到单位长度,而最小-最大标准化将样本1标准化后的特征值缩放到0到1之间。

这篇关于Normalizer(归一化)和MinMaxScaler(最小-最大标准化)的区别详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/793454

相关文章

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原