吴恩达机器学习-可选实验:使用ScikitLearn进行线性回归(Linear Regression using Scikit-Learn)

本文主要是介绍吴恩达机器学习-可选实验:使用ScikitLearn进行线性回归(Linear Regression using Scikit-Learn),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 实验一
    • 目标
    • 工具
    • 梯度下降
      • 加载数据集
      • 缩放/规范化训练数据
      • 创建并拟合回归模型
      • 查看参数
      • 作出预测
      • 绘制结果
    • 恭喜
  • 实验二
    • 目标
    • 工具
    • 线性回归,闭式解
      • 加载数据集
      • 创建并拟合模型
      • 查看参数
      • 作出预测
    • 第二个例子
    • 恭喜

有一个开源的、商业上可用的机器学习工具包,叫做scikit-learn。这个工具包包含了你将在本课程中使用的许多算法的实现。

实验一

目标

在本实验中,你将:利用scikit-learn实现使用梯度下降的线性回归

工具

您将使用scikit-learn中的函数以及matplotlib和NumPy。

import numpy as np
np.set_printoptions(precision=2)
from sklearn.linear_model import LinearRegression, SGDRegressor
from sklearn.preprocessing import StandardScaler
from lab_utils_multi import  load_house_data
import matplotlib.pyplot as plt
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0'; 
plt.style.use('./deeplearning.mplstyle')

np.set_printoptions(precision=2) 的作用是告诉 NumPy 在打印数组时只保留浮点数的两位小数。

梯度下降

Scikit-learn有一个梯度下降回归模型sklearn.linear_model.SGDRegressor。与之前的梯度下降实现一样,该模型在规范化输入时表现最好。sklearn预处理。StandardScaler将执行z-score归一化在以前的实验室。这里它被称为“标准分数”。

加载数据集

X_train, y_train = load_house_data()
X_features = ['size(sqft)','bedrooms','floors','age']

缩放/规范化训练数据

scaler = StandardScaler()
X_norm = scaler.fit_transform(X_train)
print(f"Peak to Peak range by column in Raw        X:{np.ptp(X_train,axis=0)}")   
print(f"Peak to Peak range by column in Normalized X:{np.ptp(X_norm,axis=0)}")

在这里插入图片描述

创建并拟合回归模型

sgdr = SGDRegressor(max_iter=1000)
sgdr.fit(X_norm, y_train)
print(sgdr)
print(f"number of iterations completed: {sgdr.n_iter_}, number of weight updates: {sgdr.t_}")

这段代码使用了 SGDRegressor 类来进行线性回归模型的训练和预测。
首先,通过 SGDRegressor(max_iter=1000) 创建了一个随机梯度下降(SGD)回归器对象 sgdr,并设置最大迭代次数为 1000。
然后,使用 sgdr.fit(X_norm, y_train) 对模型进行拟合,其中 X_norm 是经过标准化处理后的特征数据,y_train 是对应的目标变量。
接着,通过 print(sgdr) 打印出 sgdr 对象的相关信息,包括模型参数和超参数等。
最后,使用 f-string 格式化字符串,打印出训练完成的迭代次数 sgdr.n_iter_ 和权重更新次数 sgdr.t_

查看参数

注意,参数与规范化的输入数据相关联。拟合参数与之前使用该数据的实验室中发现的非常接近。

b_norm = sgdr.intercept_
w_norm = sgdr.coef_
print(f"model parameters:                   w: {w_norm}, b:{b_norm}")
print(f"model parameters from previous lab: w: [110.56 -21.27 -32.71 -37.97], b: 363.16")

在这里插入图片描述

作出预测

预测训练数据的目标。同时使用预测例程并使用w和b进行计算。

# make a prediction using sgdr.predict()
y_pred_sgd = sgdr.predict(X_norm)
# make a prediction using w,b. 
y_pred = np.dot(X_norm, w_norm) + b_norm  
print(f"prediction using np.dot() and sgdr.predict match: {(y_pred == y_pred_sgd).all()}")print(f"Prediction on training set:\n{y_pred[:4]}" )
print(f"Target values \n{y_train[:4]}")

在这里插入图片描述

绘制结果

让我们绘制预测值与目标值的对比图。

# plot predictions and targets vs original features    
fig,ax=plt.subplots(1,4,figsize=(12,3),sharey=True)
for i in range(len(ax)):ax[i].scatter(X_train[:,i],y_train, label = 'target')ax[i].set_xlabel(X_features[i])ax[i].scatter(X_train[:,i],y_pred,color=dlorange, label = 'predict')
ax[0].set_ylabel("Price"); ax[0].legend();
fig.suptitle("target versus prediction using z-score normalized model")
plt.show()

在这里插入图片描述

恭喜

在这个实验中,你:利用开源机器学习工具包scikit-learn使用该工具包中的梯度下降和特征归一化实现线性回归

实验二

目标

在本实验中,你将:利用scikit-learn实现基于正态方程的近似解线性回归

工具

您将使用scikit-learn中的函数以及matplotlib和NumPy

import numpy as np
np.set_printoptions(precision=2)
from sklearn.linear_model import LinearRegression, SGDRegressor
from sklearn.preprocessing import StandardScaler
from lab_utils_multi import  load_house_data
import matplotlib.pyplot as plt
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0'; 
plt.style.use('./deeplearning.mplstyle')

线性回归,闭式解

Scikit-learn具有线性回归模型,实现了封闭形式的线性回归。让我们使用早期实验室的数据——一个1000平方英尺的房子卖了30万美元,一个2000平方英尺的房子卖了50万美元。
在这里插入图片描述

加载数据集

X_train = np.array([1.0, 2.0])   #features
y_train = np.array([300, 500])   #target value

创建并拟合模型

下面的代码使用scikit-learn执行回归。第一步创建一个回归对象。第二步使用与对象相关的方法之一fit。这将执行回归,将参数拟合到输入数据。该工具包需要一个二维X矩阵。

linear_model = LinearRegression()
#X must be a 2-D Matrix
linear_model.fit(X_train.reshape(-1, 1), y_train) 

在这里插入图片描述

查看参数

在scikit-learn中,w和b参数被称为“系数”和“截距”

b = linear_model.intercept_
w = linear_model.coef_
print(f"w = {w:}, b = {b:0.2f}")
print(f"'manual' prediction: f_wb = wx+b : {1200*w + b}")

在这里插入图片描述

作出预测

调用predict函数生成预测。

y_pred = linear_model.predict(X_train.reshape(-1, 1))print("Prediction on training set:", y_pred)X_test = np.array([[1200]])
print(f"Prediction for 1200 sqft house: ${linear_model.predict(X_test)[0]:0.2f}")

在这里插入图片描述

第二个例子

第二个例子来自早期的一个具有多个特征的实验。最终的参数值和预测非常接近该实验室非标准化“长期”的结果。这种不正常的运行需要几个小时才能产生结果,而这几乎是瞬间的。封闭形式的解决方案在诸如此类的较小数据集上工作得很好,但在较大的数据集上可能需要计算。

封闭形式的解不需要规范化

# load the dataset
X_train, y_train = load_house_data()
X_features = ['size(sqft)','bedrooms','floors','age']
linear_model = LinearRegression()
linear_model.fit(X_train, y_train) 

在这里插入图片描述

b = linear_model.intercept_
w = linear_model.coef_
print(f"w = {w:}, b = {b:0.2f}")

在这里插入图片描述
这里的权重1和权重4,相对于权重2和权重3太小,不知道为什么这里不舍去

print(f"Prediction on training set:\n {linear_model.predict(X_train)[:4]}" )
print(f"prediction using w,b:\n {(X_train @ w + b)[:4]}")
print(f"Target values \n {y_train[:4]}")x_house = np.array([1200, 3,1, 40]).reshape(-1,4)
x_house_predict = linear_model.predict(x_house)[0]
print(f" predicted price of a house with 1200 sqft, 3 bedrooms, 1 floor, 40 years old = ${x_house_predict*1000:0.2f}")

在这里插入图片描述

恭喜

在这个实验中,你:利用开源机器学习工具包scikit-learn使用该工具包中的接近形式的解决方案实现线性回归

这篇关于吴恩达机器学习-可选实验:使用ScikitLearn进行线性回归(Linear Regression using Scikit-Learn)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/792880

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格