【硬件设计】(更新中)以 UCC27710 为例设计栅极驱动器元件选型(资料摘抄)

本文主要是介绍【硬件设计】(更新中)以 UCC27710 为例设计栅极驱动器元件选型(资料摘抄),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

还没更新完。。。。。。。 

 【仅作自学记录,不出于任何商业目的。如有侵权,请联系删除,谢谢!】

 本文摘抄翻译自:

  • Bootstrap Network Analysis: Focusing on the Integrated Bootstrap Functionality (infineon.com)
  • Bootstrap Circuitry Selection for Half Bridge Configurations (Rev. A)
  • 具有互锁功能的 UCC27710 620V、0.5A、1.0A 高侧低侧栅极驱动器 datasheet (Rev. B) (ti.com.cn)

【推荐阅读】

  • 自举电容
    • 一文了解BUCK电路自举电容_buck bootstrap pin design-CSDN博客
    • 自举电容-CSDN博客
    • 【大电流H桥电机驱动电路的设计与解析(包括自举电路的讲解,以IR2104+LR7843为例)】-CSDN博客
    • 以EG2133+NMOS为例讲解全桥驱动电路设计的所有知识点,包括驱动电阻,加速关断,下拉电阻,自举电路自举电容的选型和设计_eg2133检验工作电压-CSDN博客
    • 自举电路的基本拓扑结构及驱动方式-电子发烧友网 (elecfans.com)
    • 2024年全国大学生智能汽车竞赛直流无刷电机BLDC驱动电路设计,直流无刷电机驱动器 电调,气垫船电调设计,逐飞科技CH32V307,STC32G12K128_哔哩哔哩_bilibili
    • 几分钟搞定自举电路的知识要点 - 知乎 (zhihu.com)

1 栅极驱动器概述

        为了实现功率器件的快速开关并减少相关的开关功率损耗,在控制器的 PWM 输出功率半导体器件的栅极之间采用了强大的栅极驱动器。此外,当 PWM 控制器无法直接驱动开关器件的栅极时,栅极驱动器也是必不可少的。随着数字电源的出现,这种情况会经常遇到,因为来自数字控制器的 PWM 信号通常是 3.3V 逻辑信号,无法有效地打开电源开关。需要电平转换电路将 3.3V 信号提升至栅极驱动电压(例如 12V),以便完全开启功率器件并最大限度地减少传导损耗。传统的缓冲驱动电路以 NPN/PNP 双极晶体管为基础,采用发射极跟随器配置,由于缺乏电平转换功能,因此无法满足数字电源的要求。

        栅极驱动器有效地结合了电平转换缓冲驱动功能。栅极驱动器还满足其他需求,例如通过将大电流驱动器安装在靠近功率开关的位置,最大限度地降低高频开关噪声的影响;驱动栅极驱动变压器和控制浮动功率器件栅极;通过将栅极电荷功率损耗从控制器转移到驱动器中,降低功率耗散和控制器的热应力。

        UCC27710 是一款 620V 高侧和低侧栅极驱动器,具有 0.5A 拉电流、1.0A 灌电流能力,专用于驱动功率 MOSFET 或 IGBT。对于 IGBT,建议的 VDD 工作电压为 10V 至 20V;对于 MOSFET,建议的 VDD 工作电压为 17V:

        UCC27710 电气参数(在 VDD = VHB = 15V、COM = VHS = 0、-40°C<T J <+125°C 时)如下:

        其中,后文计算需用到的参数的典型值需重点关注:

  • I QBS(静态 HB-HS 电源电流):65μA

2 半桥驱动应用设计

        图 44 中的电路显示了使用 UCC27710 驱动典型半桥配置的参考设计示例,该配置可用于多种常见电源转换器拓扑,例如同步降压、同步升压、半桥/全桥隔离拓扑和电机驱动应用。

        表 4 显示了示例应用的参考设计参数: UCC27710 用于以高低侧配置驱动 650V MOSFET。

-Power Transistor:功率晶体管;Input signal amplitude:输入信号幅度;Switching Frequency:开关频率;DC Link Voltage:直流链路电压-

        以下过程概述了设计具有 0.5A 拉电流和 1.0A 灌电流能力的 600V 高侧、低侧栅极驱动器的步骤,旨在使用 UCC27710 驱动功率 MOSFET 或 IGBT。

2.1 HI 和 LI 低通滤波器元件的选择(R HI,R LI,C HI,C LI)

        建议用户避免对栅极驱动器的输入信号进行整形,以试图减慢(或延迟)驱动器输出处的信号。然而,最好在 PWM 控制器和 UCC27710 的输入引脚之间添加一个小型 RC 滤波器过滤高频噪声,如图 44 所示的 R HI & C HI 和 R LI & C LI

        这种滤波器应使用 10 Ω 至 100 Ω 范围内的 R HI、R LI,以及 10pF 至 220pF 范围内的 C HI、C LI。在本示例中,选择了 R HI = R LI = 49.9 Ω 和 C HI = C LI = 33pF 。

2.2 自举元件的选择

2.2.1 自举电路的基本工作原理 

        为栅极驱动器 IC 的高侧驱动电路供电的最广泛使用的方法之一是自举电源。自举电源由自举电阻(Bootstrap Resistor)自举二极管(Bootstrap Diode)自举电容(Bootstrap Capacitor)组成;该电路如 Figure 1 所示。

        自举电容电压 (VBS) 可以达到的最大电压取决于图 1 中所示的自举电路的元件。Rboot 上的压降、自举二极管的 VF、低压侧开关上的压降(VCEon 或 VFP,取决于流过开关的电流方向),以及放置在低压侧开关发射极和直流侧之间的分流电阻( Figure 1 中未显示)上的压降(如果存在),都需要考虑在内。

        自举电路采用半桥配置来为高侧 FET 提供偏置。图 2-1 展示了采用简化半桥配置的自举电路的充电路径。低压侧 FET 导通、高压侧 FET 关断时,HS 引脚和开关节点被拉低到;VDD 辅助电源通过旁路电容器经由自举二极管电阻为自举电容器充电

        如图 2-2 所示,当低压侧 FET 关断、高压侧开启时,栅极驱动器的 HS 引脚和开关节点被拉高至高压总线 HV;自举电容器通过栅极驱动器的 HO HS 引脚向高压侧 FET 释放部分存储电压(充电过程中积累的电压)。

 

2.2.2 自举电容的选择(C BOOT

        从设计角度来看,这是最重要的元件,因为它提供了低阻抗路径来提供高峰值电流,从而为高侧开关充电。根据一般的经验法则,该自举电容器的大小应确保能够提供足够的能量来驱动高侧 MOSFET 的栅极,而不会导致损耗超过 10%。该自举电容器应至少比高侧 FET 的栅极电容 Cg 大 10 倍。其原因是需要考虑直流偏置和温度导致的电容变化,另外还有负载瞬态期间跳过的周期。

        栅极电容 Cg 可以使用方程式 1 来确定:

C_{g} = \frac{Q_{g}}{V_{Q1g}}(1)

        其中:

  • Qg:栅极电荷(MOSFET 的数据手册);
  • VQ1g = VDD − VBootDiode(其中,VBootDiode:自举二极管上的正向压降)。

        确定栅极电荷 Cg 后,可以使用方程式 2 来估算自举电容的最小值:

C_{BOOT} \geqslant 10 \times × C_{g}(2)

        或者,可以使用方程式 3 来更准确地计算最小自举电容值:

C_{BOOT} \geqslant \frac{Q_{total}}{\Delta V_{HB}}(3)

Q_{total} = Q_{G} + I_{HBS} \times \frac{D_{max}}{f_{sw}} + \frac{I_{HB}}{f_{sw}}

        其中:

  • QG: MOSFET 栅极电荷(MOSFET 的数据手册);
  • IHBS:HB 到 VSS 漏电流(栅极驱动器的数据手册);
  • Dmax:最大占空比;
  • IHB:HB 静态电流(栅极驱动器的数据手册);
  • ∆VHB = VDD − VDH − VHBL,其中:
    • VDD:栅极驱动器 IC 的电源电压;
    • VDH:自举二极管正向压降(自举二极管数据手册);
    • VHBL:HBUVLO 下降阈值(栅极驱动器的数据手册)。

        需要注意的是,如果值低于所需的最小自举电容值,可能会激活驱动器的 UVLO,从而过早关断高侧 FET。另一 方面,较高的自举电容值会在某些情况下(在对自举电容器进行初始充电时或具有较窄的自举充电周期)导致较 低的纹波电压和较长的反向恢复时间,以及较高的峰值电流流过自举二极管。方程式 4 展示了自举电容与流经自 举二极管的峰值电流之间的关系:

I_{peak} = C_{BOOT} \times \frac{Dv}{dt}(4)

        通常建议使用具有良好额定电压 (2xVDD)、温度系数和电容差的低 ESR 和低 ESL、表面贴装型多层陶瓷电容器 (MLCC)。

        下面以 UCC27710 进行举例计算:

        启动电容器的大小应足以将 FET Q1 的栅极驱动至高电平,并为功率晶体管维持稳定的栅极驱动电压。每个开关周期所需的总电荷量通过以下式子估算:

        其中, 总栅极电荷 QG 取的 31.5nC 这一数值,应该在所用 P 沟道 MOSFET 的数据手册上可以找到或计算得出。

        QG 相关知识可参看:

  • ​​​​​​Can you explain more about MOSFET's Qg, Qgs, and Qgd parameters? | Renesas Customer Hub
  • Electrical characteristics of MOSFETs (Charge Characteristic Qg/Qgs1/Qgd/QSW/QOSS) | Toshiba Electronic Devices & Storage Corporation | Asia-English (semicon-storage.com)
  • 何谓总栅极电荷(Qg)_罗姆半导体集团(ROHM Semiconductor)

        本设计示例的目标电容器纹波电压为 0.5V。因此,CBOOT 的最低要求是:

        实际上,CBOOT 的值需要大于计算值。这样可以考虑直流偏压和温度引起的电容偏移,以及负载瞬态时发生的跳变周期。在本设计示例中,选择 220nF 电容器作为自举电容:

2.2.3 VDD 旁路/保持电容 (C VDD) 和 R BIAS 的选择

        为自举电容器充电的电荷必须来自某个较大的旁路电容器,通常为 VDD 旁路电容器。根据经验,此旁路电容器的大小应至少比自举电容器大 10 倍,以便它不会在自举电容器充电期间完全耗尽电荷。这样便可以在充电序列期间 正确地为自举电容器充电。在最坏的情况下,该 10 倍的比率会在 VDD 电容器上产生 10% 的最大纹波。

        VDD 电容 (CVDD) 应选择为至少比 CBOOT 大 10 倍,以便在为启动电容器充电时 VDD 电容器上的压降最小。对于本设计示例,选择了 2.2μF 电容:

        建议将 10 Ω 电阻 R_BIAS 与偏置电源和 VDD 引脚串联,以使 VDD 斜坡上升时间大于 20μs,以最大限度地减少 LO 和 HO 上升,如图 45 所示:

附 模电基础概念回顾——MOSFET

摘自:模拟电子技术基础(第四版)教材

        -源极 s    漏极 d    栅极 g-

        场效应管(FET,Feild Effect Transistor)是利用输入回路的电场效应来控制输出回路电流的一种半导体器件,并以此命名。由于它仅靠半导体中的多数载流子导电,又称单极型晶体管。 

        绝缘栅型场效应管的栅极与源极、栅极与漏极之间均采用SiO2绝缘层隔离,因此而得名。又因栅极为金属铝,故又称为MOS管(MOS,Metal-Oxide-Semiconductor)。与结型场效应管相同,MOS管也有N沟道P沟道两类,但每一类又分为增强型耗尽型两种,因此MOS管的四种类型为:N沟道增强型管N沟道耗尽型管P沟道增强型管P沟道耗尽型管。凡栅 - 源电压 ucs 为零时漏极电流也为零的管子均属于增强型管,凡栅 - 源电压 Ucs 为零时漏极电流不为零的管子均属于耗尽型管

  • N沟道增强型MOS管

  •  N沟道耗尽型MOS管

        特性曲线:

这篇关于【硬件设计】(更新中)以 UCC27710 为例设计栅极驱动器元件选型(资料摘抄)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/791742

相关文章

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

Oracle 通过 ROWID 批量更新表的方法

《Oracle通过ROWID批量更新表的方法》在Oracle数据库中,使用ROWID进行批量更新是一种高效的更新方法,因为它直接定位到物理行位置,避免了通过索引查找的开销,下面给大家介绍Orac... 目录oracle 通过 ROWID 批量更新表ROWID 基本概念性能优化建议性能UoTrFPH优化建议注

Redis中6种缓存更新策略详解

《Redis中6种缓存更新策略详解》Redis作为一款高性能的内存数据库,已经成为缓存层的首选解决方案,然而,使用缓存时最大的挑战在于保证缓存数据与底层数据源的一致性,本文将介绍Redis中6种缓存更... 目录引言策略一:Cache-Aside(旁路缓存)策略工作原理代码示例优缺点分析适用场景策略二:Re

Pandas利用主表更新子表指定列小技巧

《Pandas利用主表更新子表指定列小技巧》本文主要介绍了Pandas利用主表更新子表指定列小技巧,通过创建主表和子表的DataFrame对象,并使用映射字典进行数据关联和更新,实现了从主表到子表的同... 目录一、前言二、基本案例1. 创建主表数据2. 创建映射字典3. 创建子表数据4. 更新子表的 zb

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如