CoLab设置使用GPU和TPU

2024-03-09 10:30
文章标签 设置 使用 gpu tpu colab

本文主要是介绍CoLab设置使用GPU和TPU,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

##tf2.4.0
from tensorflow.python.keras.callbacks import EarlyStopping
from tensorflow.python.keras.layers import Embedding, SpatialDropout1D, LSTM, Dense
from tensorflow.python.keras.models import Sequentialimport tensorflow as tf
import os##下面6行为GPU设置,若用GPU,则用这6行,其他的就不用了了
# gpus = tf.config.list_physical_devices("GPU")
# print(gpus)
# if gpus:
#     gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPU
#     tf.config.experimental.set_memory_growth(gpu0, True)  # 设置GPU显存用量按需使用
#     tf.config.set_visible_devices([gpu0], "GPU")#加载数据
with open('w2v1000.pkl', 'rb') as f:dict = pickle.load(f)
X = dict['X']
Y = dict['Y']#TPU设置代码,以下全为TPU的设置,需要注释掉上面GPU设置的6行,所有代码原封不动照搬即可,只需要
#在模型编译print语句后把自己模型给替换即可。
tf.keras.backend.clear_session()
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
tf.config.experimental_connect_to_cluster(resolver)
# This is the TPU initialization code that has to be at the beginning.
tf.tpu.experimental.initialize_tpu_system(resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))
#strategy = tf.distribute.experimental.TPUStrategy(resolver)#这句好像已经改成下面了
strategy = tf.distribute.TPUStrategy(resolver)with strategy.scope():#模型编译print("# Preparing model")#就是这条语句后替换自己的模型即可,其他不用动model = Sequential()#我写的示例为LSTM模型model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2, input_shape=(1600, 150),      return_sequences=True))model.add(Dense(32))#model.add(Dense(2, activation='softmax'))model.add(Dense(1, activation='sigmoid'))model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])print("  ", model.summary())#模型训练,这条语句就按正常写即可,与TPU无关了
model.fit(X, Y, epochs=10,  batch_size=10, validation_split=0.2,workers=4,use_multiprocessing=True,callbacks=[EarlyStopping(monitor='loss', patience=7, min_delta=0.0001)])#模型保存
model.save('w2vmodel1000.h5')

以下是Colab测试结果:

 

 可以看到设备类型为TPU,速度十分快,同样模型用GPU(Tesla T4)一个Epoch需要800多秒,快了20到30倍,这还是bitchsize设置的比较小,所以TPU yyds!

这篇关于CoLab设置使用GPU和TPU的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/790399

相关文章

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows