R语言基础的代码语法解译笔记

2024-03-09 07:04

本文主要是介绍R语言基础的代码语法解译笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、双冒号,即:“::”

要使用某个包里的函数,通常做法是先加载(library)包,再调用函数。最新加载的包的namespace会成为最新的enviroment,某些情况下可能影响函数的结果。而package name::functionname的用法,一是可以在需要用某个函数时临时直接加载包,不用事先library。另一点更重要的是尽可能减少library带来的附带作用,这一点在开发R包时影响较大。而这种写法的副作用,是会稍微慢上那么几毫秒,在需要反复循环使用一个函数时对效率有影响,其他时候除了写起来麻烦一点,基本没有显见的副作用。

2、%>% (向右操作符,forward-pipe operator)

把左侧的数据或表达式,传递给右侧的函数调用或表达式进行运行,可以连续操作。相当于将左边的作为右边函数的第一个参数。

现实原理如下图所示,使用%>%把左侧的程序的数据集A传递右侧程序的B函数,B函数的结果数据集再向右侧传递给C函数,最后完成数据计算。

例如:

  • f(x,y)等价于x %>% f(y)
  • g(f(x,y),z)等价于x %>% f(y) %>% g()
library(ggplot2)
library(dplyr)cut_depth <- group_by(diamonds,cut,depth)
cut_depth <- summarise(cut_depth,n=n())
cut_depth <- filter(cut_depth,depth>55,depth<70)
cut_depth <- mutate(cut_depth,prop=n/sum(n))
cut_depth# 使用%>%
cut_depth1 <- diamonds%>%group_by(cut,depth)%>%summarise(n=n())%>%filter(depth>55,depth<70)%>%mutate(prop=n/sum(n))
cut_depth1# 另外一个例子
library(magrittr)set.seed(123) #设置种子序列,保证结果可重复
n1<-rnorm(10000)        
n2<-abs(n1)*50        
n3<-matrix(n2,ncol = 100) 
n4<-round(rowMeans(n3))
hist(n4%%7)# 使用 %>%
set.seed(123)
rnorm(10000) %>%abs %>% `*` (50)  %>%matrix(ncol=100)  %>%rowMeans %>% round %>% `%%`(7) %>% hist

3、%T>%(向左操作符,tee operator)

功能和 %>% 基本是一样的,只不过它是把左边的值做为传递的值,而不是当前步计算得到的值。

现实原理如下图所示,使用%T>%把左侧的程序的数据集A传递右侧程序的B函数,B函数的结果数据集不再向右侧传递,而是把B左侧的A数据集再次向右传递给C函数,最后完成数据计算。

例子:

假设我们计算如下:

library(magrittr)set.seed(123)
rnorm(10000) %>%abs %>% `*` (50)  %>%matrix(ncol=100)  %>%rowMeans %>% round %>% `%%`(7) %>% hist %>% sum

提示报错。这是由于输出直方图后,返回值为空,那么再继续使用管道,就会把空值向右进行传递,这样计算最后一步时就会出错。这时我们需求的是,把除以7的余数向右传递给最后一步求和。

使用%T>%改成如下:

library(magrittr)set.seed(123)
rnorm(10000) %>%abs %>% `*` (50)  %>%matrix(ncol=100)  %>%rowMeans %>% round %>% `%%`(7) %T>% hist %>% sum

计算出结果。

4、 %$% (解释操作符,exposition pipe-operator)

%$%的作用是把左侧数据的属性名传给右侧,让右侧的调用函数直接通过名字,就可以获取左侧的数据。比如,我们获得一个data.frame类型的数据集,通过使用 ,在右侧的函数中可以直接使用列名操作数据。

现实原理如下图所示,使用%$%把左侧的程序的数据集A传递右侧程序的B函数,同时传递数据集A的属性名,作为B函数的内部变量方便对A数据集进行处理,最后完成数据计算。

例子:

下面定义一个10行3列的data.frame,列名分别为x,y,z,获取x列大于5的数据集。使用 %$% 把列名x直接传到右侧进行判断。这里.代表左侧的完整数据对象。一行代码就实现了需求,而且这里不需要显示的定义中间变量。

library(magrittr)set.seed(123)
df<-data.frame(x=1:10,y=rnorm(10),z=letters[1:10])
df[df$x>5,]# 使用%$%后
set.seed(123)
data.frame(x=1:10,y=rnorm(10),z=letters[1:10]) %$% .[x>5,]

5、%<>% (复合赋值操作符,compound assignment pipe-operator)

%<>%复合赋值操作符, 功能与 %>% 基本是一样的,多了一项额外的操作,就是把结果写回到最左侧的对象(覆盖原来的值)。比如,我们需要对一个数据集进行排序,那么需要获得排序的结果,用%<>%就是非常方便的。

现实原理如下图所示,使用%<>%把左侧的程序的数据集A传递右侧程序的B函数,B函数的结果数据集再向右侧传递给C函数,C函数结果的数据集再重新赋值给A,完成整个过程。

例子:

library(magrittr)set.seed(123)
x<-rnorm(10)
x %>% abs %>% sort
x # 取完绝对值,排完序之后的结果并没有直接写到x里面去# 使用%<>%
set.seed(123)
x<-rnorm(10)
x %<>% abs %>% sort
x # 但是如果使用%<>%操作符,你会发现取完绝对值,排完序之后的结果直接覆盖掉了原来的x。

6、符号:$

$符号用于提取数据框(data frame)或列表(list)中的成员。它允许访问数据框或列表中的某个列(成员),并返回该列的值。

例子:

df <- data.frame(name = c("Alice", "Bob", "Charlie"),age = c(25, 30, 35))df$name
df$age

注意:$符号只能用于数据框和列表类型的对象,不能用于向量和其他对象。

7、as.factor 或 factor函数作用

as.factor函数用于将一个变量转换为因子(factor)类型(强制转换),分组时用的较多。因子是R语言中用于表示分类变量的数据类型。当将一个变量转换为因子时,R会自动将变量的不同取值作为因子的水平(level),并将原始变量的值替换为对应水平的编码。可以使用as.factor()函数取代factor()函数。

例子:

gender <- c("男", "女", "男", "男", "女")gender_factor <- as.factor(gender)
gender_factor

这里返回结果包括以下两个。

  • x向量,这是将转换为因子的向量。
  • levels:原x向量内元素的可能值。

可以使用参数levels强制设定分类数据的顺序:

gender <- c("男", "女", "男", "男", "女")gender_factor <- factor(gender, levels=c("女", "男"))
gender_factor

如果有缺失的Levels值,也可以使用levels参数设置完整的Levels数据:

gender <- c("男", "女", "男", "男", "女")gender_factor <- factor(gender, levels=c("女", "男", "中"))
gender_factor

将因子水平进行修改:

gender <- c("男", "女", "男", "男", "女")gender_factor <- factor(gender, levels=c("女", "男", "中"), labels = c("1","2","3"))
gender_factor

注意:指定levels时,使用as.factor会报错。

8、aes 函数作用

aes函数是ggplot2包中的一个重要函数,用于创建美学映射(Aesthetic Mapping),即将数据的变量映射到图形的美学属性上。

aes函数的使用通常发生在ggplot()函数中的mapping参数中。它允许将数据的变量映射到图形的不同属性,如颜色、形状、大小、位置等。通过将美学属性与具体的数据列关联,可以创建丰富多样的图形效果,并在不同的图层中进行数据可视化。

# 映射函数,函数的最常见参数有两个
# x:x向量,将数据映射到本图层的x轴
# y:y向量,将数据映射到本图层的y轴
# …:其他向量,将数据映射到本图层的其他几何要素上library(ggplot2)
aes(x, y, ...)

9、scale_colour_manual 函数作用

scale_colour_manual是ggplot2包中的一个函数,用于手动自定义颜色映射。它允许用户指定不同数据值对应的颜色,以及设置相应的标签和图例。

scale_colour_manual函数通常与ggplot函数中的aes函数和相关的图层函数(如geom_point、geom_line等)一起使用,用于自定义颜色映射。例如,使用以下代码可以创建一个散点图,并手动指定数据值1对应的颜色为红色,数据值2对应的颜色为蓝色。

library(ggplot2)# 创建数据框
df <- data.frame(x = c(1, 2, 1, 2), y = c(1, 2, 2, 1), group = c(1, 1, 2, 2))# 绘制散点图,并手动指定颜色映射
ggplot(data = df, mapping = aes(x = x, y = y, color = factor(group))) +geom_point() + # 绘制散点图scale_color_manual(values = c("red", "blue"))

上述代码首先创建了一个数据框df,其中包含了三个变量x、y和group。然后使用ggplot函数创建一个散点图,并使用aes函数将x映射到x轴,y映射到y轴,group映射到颜色属性。最后,使用geom_point函数绘制散点图,并使用scale_color_manual函数手动指定颜色映射,将group为1的数据值映射为红色,group为2的数据值映射为蓝色。

通过调整scale_color_manual函数中的values参数,可以指定更多数据值对应的颜色。

10、scale_fill_manual 函数作用

scale_fill_manual是ggplot2包中的一个函数,用于手动自定义填充颜色的映射。它允许用户指定不同数据值对应的填充颜色,以及设置相应的标签和图例。

scale_fill_manual函数通常与ggplot函数中的aes函数和相关的图层函数(如geom_bar、geom_area等)一起使用,用于自定义填充颜色映射。例如,使用以下代码可以创建一个柱状图,并手动指定不同类别的填充颜色。

library(ggplot2)# 创建数据框
df <- data.frame(category = c("A", "B", "C", "D"),value = c(10, 15, 20, 25))# 创建柱状图,并手动指定填充颜色映射
ggplot(data = df, mapping = aes(x = category, y = value, fill = category)) +geom_col() +scale_fill_manual(values = c("red", "blue", "green", "yellow"))

上述代码首先创建了一个数据框df,其中包含了两个变量category和value。然后使用ggplot函数创建一个柱状图,并使用aes函数将category映射到x轴,value映射到y轴,以及作为柱子的填充颜色。最后,使用geom_col函数绘制柱状图,并使用scale_fill_manual函数手动指定填充颜色映射,将不同的category类别映射为不同的颜色。

通过调整scale_fill_manual函数中的values参数,可以指定更多数据值对应的填充颜色。

11、stat_ellipse 函数作用

stat_ellipse是ggplot2包中的一个统计变换函数,用于在散点图上添加椭圆。它可以根据给定的数据点的均值和协方差矩阵,绘制出椭圆来表示数据的分布情况,提供了对数据集的可视化描述。

stat_ellipse函数通常与geom_point函数一起使用,用于在散点图上显示椭圆。例如,使用以下代码可以创建一个带有椭圆的散点图。

library(ggplot2)# 创建数据框
df <- data.frame(x = rnorm(100), y = rnorm(100))# 绘制散点图,并添加椭圆
ggplot(data = df, mapping = aes(x = x, y = y)) +geom_point() +stat_ellipse()

上述代码首先创建了一个数据框df,其中包含了两个随机生成的变量x和y。然后使用ggplot函数创建一个散点图,并使用aes函数将x映射到x轴,y映射到y轴。最后,使用geom_point函数绘制散点图,并使用stat_ellipse函数添加椭圆。

stat_ellipse函数默认使用95%的置信区间绘制椭圆,即表示数据的大致范围。还可以通过调整参数来定制椭圆的样式,例如设置椭圆的颜色、填充、线条类型等。

完整例子:

## 设置种子
set.seed(20240208)## R包加载
library(ggplot2)## 数据构建(无意义)
data1<-data.frame(x=rnorm(500,mean = 15,sd=10),y=rnorm(500,mean = 10,sd=10))
data2<-data.frame(x=rnorm(500,mean = 20,sd=10),y=rnorm(500,mean = 15,sd=10))
data<-rbind(data1,data2)## kmeans聚类
kmeans<-kmeans(data,2,nstart = 1000)
data$cluster<-as.factor(kmeans$cluster)## 绘图
ggplot(data = data,aes(x=x,y=y,color=cluster))+geom_point(alpha=0.3)+stat_ellipse(aes(x=x,y=y,fill=cluster),geom = "polygon",level = 0.95,alpha=0.2)+scale_colour_manual(values = c("#00AFBB","#FC4E07"))+scale_fill_manual(values = c("#00AFBB","#FC4E07"))+theme_bw()->p1
print(p1)

这篇关于R语言基础的代码语法解译笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/789890

相关文章

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪