Pytorch学习 day07(神经网络基本骨架的搭建、2D卷积操作、2D卷积层)

本文主要是介绍Pytorch学习 day07(神经网络基本骨架的搭建、2D卷积操作、2D卷积层),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

神经网络基本骨架的搭建

  • Module:给所有的神经网络提供一个基本的骨架,所有神经网络都需要继承Module,并定义_ _ init _ _方法、 forward() 方法
  • 在_ _ init _ _方法中定义,卷积层的具体变换,在forward() 方法中定义,神经网络的前向传播具体是什么样的
  • 官方代码样例如下:
import torch.nn as nn
import torch.nn.functional as Fclass Model(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(1, 20, 5)self.conv2 = nn.Conv2d(20, 20, 5)def forward(self, x):x = F.relu(self.conv1(x))return F.relu(self.conv2(x))
  • 表明输入 x 经过一个卷积层A,一个非线性层a,一个卷积层B,一个非线性层b,最后输出,如下图:
    在这里插入图片描述
  • 简单模型代码如下:
from torch import nn
import torch# 定义一个简单的Module
class Tudui(nn.Module):def __init__(self): # 初始化函数super().__init__()  # 调用父类的初始化函数def forward(self, input):   # 前向传播函数output = input + 1  # 定义张量的加法运算return output   # 返回输出张量tudui = Tudui() # 实例化一个Tudui对象
x = torch.tensor(1.0)   # tensor()函数可以将任意数据转换为张量
print(tudui(x))
* 注意:可以在调试模式中,选择单步执行代码,一步一步执行更清晰

2D卷积操作(了解原理即可,实际直接使用卷积层)

在这里插入图片描述

  • 2D卷积操作:卷积核在输入图像上不断移动,并把对应位相乘再求和,最后得到输出结果,以下是参数设置:
    • input:输入张量的维数要是四维,batch表示一次输入多少张图像,channel表示通道数,RGB图像的通道数为3,灰度图像(二维张量)的通道数为1,H为高度,W为宽度
    • weight:卷积核,维数也要是四维,out_channel表示卷积核的数量,in_channel表示输入图像的通道数,一般groups为1,H为高度,W为宽度
    • stride:卷积核每次移动的步长(为整数或者长度为2的元组),如果是整数,表示在水平和垂直方向上使用相同的步长。如果是元组,分别表示在水平和垂直方向上的步长。默认为1。
    • padding:控制在输入张量的边界周围添加的零填充的数量(为整数或长度为2的元组),如果是整数,表示在水平和垂直方向上使用相同的填充数量。如果是元组,分别表示在水平和垂直方向上的填充数量。默认为0
  • 例如,将一张灰度图经过2D卷积操作得到输出的代码,如下:
import torch# 因为想让输入数据是tensor类型的,所以使用torch.tensor
input = torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]])# 因为想让卷积核是tensor类型的,所以使用torch.tensor
kernel = torch.tensor([[1,2,1],[0,1,0],[2,1,0]])
print(input.shape) # torch.Size([5, 5])
print(kernel.shape) # torch.Size([3, 3])# 由于卷积核的尺寸和输入的尺寸都不满足卷积运算的要求,所以需要对输入和卷积核进行维度的扩展
input = torch.reshape(input, [1,1,5,5]) # 输入是一张二维图片,所以batch_size=1(一张),通道数为1(二维张量)
kernel = torch.reshape(kernel, [1,1,3,3]) # 卷积核的个数为1,所以输出通道数为1,输入通道数由上可知为1print(input.shape) # torch.Size([1, 1, 5, 5])
print(kernel.shape) # torch.Size([1, 1, 3, 3])output = torch.nn.functional.conv2d(input, kernel, stride=1)   # 经过2D卷积运算后的输出 
print(output)
  • 可视化图如下:
    在这里插入图片描述
  • padding设置为1的可视化图如下:
    在这里插入图片描述

2D卷积层

在这里插入图片描述
在这里插入图片描述

  • 2D卷积层,通常我们直接使用卷积层即可,上一节仅供了解,以下是参数设置:
    • in_channels:输入通道数,RGB图像为3,灰度图像为1
    • out_channels:输出通道数,即卷积核的个数
    • kernel_size:卷积核的高宽(整数或元组),整数时表示高宽都为该整数,元组时表示分别在水平和垂直方向上的长度。我们只需要设置卷积核的高宽,而卷积核内部的具体参数不需要我们指定,它是在神经网络的训练中不断地对分布进行采样,同时进行不断调整
    • stride:卷积核每次移动的步长(整数或元组),整数时表示在水平和垂直方向上使用相同的步长。元组时分别表示在水平和垂直方向上的步长。默认为1。
    • padding:控制在输入张量的边界周围添加的零填充的数量(为整数或元组),如果是整数,表示在水平和垂直方向上使用相同的填充数量。如果是元组,分别表示在水平和垂直方向上的填充数量。默认为0
    • padding_mode:控制以什么样的模式进行填充,默认为 zeros 零填充
    • dilation:卷积核之间的距离,空洞卷积,默认为1
    • groups:默认为1
    • bias:给输出加一个偏置,默认为True
  • 以下是2D卷积层的可视化图像,青色的为输出图像,蓝色为输入图像,深蓝色为卷积核:
请添加图片描述请添加图片描述
No padding,No stridesAribitrary padding,No strides
请添加图片描述请添加图片描述
Half padding,No stridesFull padding,No strides
请添加图片描述请添加图片描述请添加图片描述
No padding,stridesPadding,stridesPadding,strides(odd)

这篇关于Pytorch学习 day07(神经网络基本骨架的搭建、2D卷积操作、2D卷积层)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/789778

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Python使用openpyxl读取Excel的操作详解

《Python使用openpyxl读取Excel的操作详解》本文介绍了使用Python的openpyxl库进行Excel文件的创建、读写、数据操作、工作簿与工作表管理,包括创建工作簿、加载工作簿、操作... 目录1 概述1.1 图示1.2 安装第三方库2 工作簿 workbook2.1 创建:Workboo

Ubuntu 24.04启用root图形登录的操作流程

《Ubuntu24.04启用root图形登录的操作流程》Ubuntu默认禁用root账户的图形与SSH登录,这是为了安全,但在某些场景你可能需要直接用root登录GNOME桌面,本文以Ubuntu2... 目录一、前言二、准备工作三、设置 root 密码四、启用图形界面 root 登录1. 修改 GDM 配

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

JSONArray在Java中的应用操作实例

《JSONArray在Java中的应用操作实例》JSONArray是org.json库用于处理JSON数组的类,可将Java对象(Map/List)转换为JSON格式,提供增删改查等操作,适用于前后端... 目录1. jsONArray定义与功能1.1 JSONArray概念阐释1.1.1 什么是JSONA