Pytorch学习 day07(神经网络基本骨架的搭建、2D卷积操作、2D卷积层)

本文主要是介绍Pytorch学习 day07(神经网络基本骨架的搭建、2D卷积操作、2D卷积层),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

神经网络基本骨架的搭建

  • Module:给所有的神经网络提供一个基本的骨架,所有神经网络都需要继承Module,并定义_ _ init _ _方法、 forward() 方法
  • 在_ _ init _ _方法中定义,卷积层的具体变换,在forward() 方法中定义,神经网络的前向传播具体是什么样的
  • 官方代码样例如下:
import torch.nn as nn
import torch.nn.functional as Fclass Model(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(1, 20, 5)self.conv2 = nn.Conv2d(20, 20, 5)def forward(self, x):x = F.relu(self.conv1(x))return F.relu(self.conv2(x))
  • 表明输入 x 经过一个卷积层A,一个非线性层a,一个卷积层B,一个非线性层b,最后输出,如下图:
    在这里插入图片描述
  • 简单模型代码如下:
from torch import nn
import torch# 定义一个简单的Module
class Tudui(nn.Module):def __init__(self): # 初始化函数super().__init__()  # 调用父类的初始化函数def forward(self, input):   # 前向传播函数output = input + 1  # 定义张量的加法运算return output   # 返回输出张量tudui = Tudui() # 实例化一个Tudui对象
x = torch.tensor(1.0)   # tensor()函数可以将任意数据转换为张量
print(tudui(x))
* 注意:可以在调试模式中,选择单步执行代码,一步一步执行更清晰

2D卷积操作(了解原理即可,实际直接使用卷积层)

在这里插入图片描述

  • 2D卷积操作:卷积核在输入图像上不断移动,并把对应位相乘再求和,最后得到输出结果,以下是参数设置:
    • input:输入张量的维数要是四维,batch表示一次输入多少张图像,channel表示通道数,RGB图像的通道数为3,灰度图像(二维张量)的通道数为1,H为高度,W为宽度
    • weight:卷积核,维数也要是四维,out_channel表示卷积核的数量,in_channel表示输入图像的通道数,一般groups为1,H为高度,W为宽度
    • stride:卷积核每次移动的步长(为整数或者长度为2的元组),如果是整数,表示在水平和垂直方向上使用相同的步长。如果是元组,分别表示在水平和垂直方向上的步长。默认为1。
    • padding:控制在输入张量的边界周围添加的零填充的数量(为整数或长度为2的元组),如果是整数,表示在水平和垂直方向上使用相同的填充数量。如果是元组,分别表示在水平和垂直方向上的填充数量。默认为0
  • 例如,将一张灰度图经过2D卷积操作得到输出的代码,如下:
import torch# 因为想让输入数据是tensor类型的,所以使用torch.tensor
input = torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]])# 因为想让卷积核是tensor类型的,所以使用torch.tensor
kernel = torch.tensor([[1,2,1],[0,1,0],[2,1,0]])
print(input.shape) # torch.Size([5, 5])
print(kernel.shape) # torch.Size([3, 3])# 由于卷积核的尺寸和输入的尺寸都不满足卷积运算的要求,所以需要对输入和卷积核进行维度的扩展
input = torch.reshape(input, [1,1,5,5]) # 输入是一张二维图片,所以batch_size=1(一张),通道数为1(二维张量)
kernel = torch.reshape(kernel, [1,1,3,3]) # 卷积核的个数为1,所以输出通道数为1,输入通道数由上可知为1print(input.shape) # torch.Size([1, 1, 5, 5])
print(kernel.shape) # torch.Size([1, 1, 3, 3])output = torch.nn.functional.conv2d(input, kernel, stride=1)   # 经过2D卷积运算后的输出 
print(output)
  • 可视化图如下:
    在这里插入图片描述
  • padding设置为1的可视化图如下:
    在这里插入图片描述

2D卷积层

在这里插入图片描述
在这里插入图片描述

  • 2D卷积层,通常我们直接使用卷积层即可,上一节仅供了解,以下是参数设置:
    • in_channels:输入通道数,RGB图像为3,灰度图像为1
    • out_channels:输出通道数,即卷积核的个数
    • kernel_size:卷积核的高宽(整数或元组),整数时表示高宽都为该整数,元组时表示分别在水平和垂直方向上的长度。我们只需要设置卷积核的高宽,而卷积核内部的具体参数不需要我们指定,它是在神经网络的训练中不断地对分布进行采样,同时进行不断调整
    • stride:卷积核每次移动的步长(整数或元组),整数时表示在水平和垂直方向上使用相同的步长。元组时分别表示在水平和垂直方向上的步长。默认为1。
    • padding:控制在输入张量的边界周围添加的零填充的数量(为整数或元组),如果是整数,表示在水平和垂直方向上使用相同的填充数量。如果是元组,分别表示在水平和垂直方向上的填充数量。默认为0
    • padding_mode:控制以什么样的模式进行填充,默认为 zeros 零填充
    • dilation:卷积核之间的距离,空洞卷积,默认为1
    • groups:默认为1
    • bias:给输出加一个偏置,默认为True
  • 以下是2D卷积层的可视化图像,青色的为输出图像,蓝色为输入图像,深蓝色为卷积核:
请添加图片描述请添加图片描述
No padding,No stridesAribitrary padding,No strides
请添加图片描述请添加图片描述
Half padding,No stridesFull padding,No strides
请添加图片描述请添加图片描述请添加图片描述
No padding,stridesPadding,stridesPadding,strides(odd)

这篇关于Pytorch学习 day07(神经网络基本骨架的搭建、2D卷积操作、2D卷积层)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/789778

相关文章

mysql中insert into的基本用法和一些示例

《mysql中insertinto的基本用法和一些示例》INSERTINTO用于向MySQL表插入新行,支持单行/多行及部分列插入,下面给大家介绍mysql中insertinto的基本用法和一些示例... 目录基本语法插入单行数据插入多行数据插入部分列的数据插入默认值注意事项在mysql中,INSERT I

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

mapstruct中的@Mapper注解的基本用法

《mapstruct中的@Mapper注解的基本用法》在MapStruct中,@Mapper注解是核心注解之一,用于标记一个接口或抽象类为MapStruct的映射器(Mapper),本文给大家介绍ma... 目录1. 基本用法2. 常用属性3. 高级用法4. 注意事项5. 总结6. 编译异常处理在MapSt

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

MyBatis ResultMap 的基本用法示例详解

《MyBatisResultMap的基本用法示例详解》在MyBatis中,resultMap用于定义数据库查询结果到Java对象属性的映射关系,本文给大家介绍MyBatisResultMap的基本... 目录MyBATis 中的 resultMap1. resultMap 的基本语法2. 简单的 resul

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

git stash命令基本用法详解

《gitstash命令基本用法详解》gitstash是Git中一个非常有用的命令,它可以临时保存当前工作区的修改,让你可以切换到其他分支或者处理其他任务,而不需要提交这些还未完成的修改,这篇文章主要... 目录一、基本用法1. 保存当前修改(包括暂存区和工作区的内容)2. 查看保存了哪些 stash3. 恢