AI技术专题之一:意法半导体人工智能解决方案概述

本文主要是介绍AI技术专题之一:意法半导体人工智能解决方案概述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI技术专题之一:意法半导体人工智能解决方案概述

AI(人工智能)起源于达特茅斯学院于1956年举办的夏季研讨会。在该会议上,“人工智能”一词首次被正式提出。计算能力的技术突破推动了人工智能一轮又一轮的发展。近年来,随着大数据的可用性提高,第三轮人工智能发展浪潮已经来临。2015年,基于深度学习的人工智能算法在ImageNet竞赛的图像识别精度方面首次超过人类,人工智能在发展道路上高歌猛进。随着计算机视觉技术研究取得突破,深度学习已经在语音识别、自然语言处理等不同研究领域都获得了巨大的成功。现在,人工智能已经在生活中的方方面面显示出巨大潜力。

结合人工智能技术的发展阶段,为大家解释一下AI的主要概念:

AI
能让计算机脑模拟人类行为的一切技术。

机器学习
人工智能(AI)的子集。通过从数据中学习而不断改进的算法和方法。

深度学习
机器学习(ML)的子集。通过使用模拟人类大脑神经网络的多层结构,从大量数据中获得有价值信息的学习算法。
在这里插入图片描述

人工智能新力量 意法半导体Deep Edge AI应运而生

目前,因为算力的需求,人工智能技术主要应用于云端场景。由于数据传输延迟等因素的限制,基于云的解决方案可能无法满足部分用户对数据安全性、系统响应能力、私密性、以及本地节点功耗的需求。在集中式人工智能解决方案中,嵌入式设备(智能音箱、可穿戴设备等)通常依赖云服务器实现人工智能能力,而在Deep Edge AI解决方案中,嵌入式设备本身即可在本地运行人工智能算法,实现实时环境感知、人机交互、决策控制等功能。
在这里插入图片描述
将推理过程移到深度边缘计算会带来一些优势,比如系统响应能力、更好的用户信息隐私保护(并非所有数据都需要通过多个系统传输到云端)、降低连接成本和功耗。
在这里插入图片描述
根据ABI的研究结果,到2030年,Deep Edge AI器件的全球出货量将达到25亿台。意法半导体注意到,围绕Deep Edge AI技术的社区和生态系统越来越多,专注于独立、低功耗且经济划算的嵌入式解决方案。作为该趋势的主要推动者,意法半导体已经在AI方面投入大量资源,旨在帮助开发人员在基于微控制器/微处理器(STM32系列)和传感器(MEMS、ToF…)的嵌入式系统上快速部署AI应用。意法半导体为STM32系列和集成了机器学习核心(MLC)的MEMS传感器提供了一套AI工具,可以加快开发周期,并且可以优化训练好的AI模型(STM32Cube.AI)。

作为通用技术,人工智能已经在多个领域取得了令人瞩目的成就。我们相信,越来越多的智能终端设备将会对人类生活产生更为直接的积极影响。

通过意法半导体的生态系统快速部署AI应用

意法半导体提供一个包含硬件和软件的生态系统,帮助快速、轻松地开发用于传感器和微控制器的多种Deep Edge AI算法。

MEMS传感器生态系统中的机器学习通过运行在名为机器学习核心(MLC)的传感器嵌入式引擎上的决策树分类器,帮助设计人员利用AI at the Edge实现手势、活动识别、异常检测等。
在这里插入图片描述
因此,物联网解决方案开发人员可以在快速原型制作环境中部署我们的任意(内嵌机器学习核心的)传感器,以便使用UNICO-GUI工具快速开发超低功耗应用。

借助内置的低功耗传感器设计、高级AI事件检测、唤醒逻辑和实时边缘计算功能,传感器中的MLC极大地减少了系统数据传输量,降低了网络处理负担。

如果开发人员决定开发一个基于传感器内机器学习核心的解决方案,则需要一套全新的方法来发布自己的应用。

如要创建任何机器学习算法,起点都是数据及其对类(用于描述待解决的复杂问题)的定义。用户可以遵循五个步骤,在传感器中创建并运行AI应用。UNICO-GUI是一种图形用户界面,能够支持包括决策树生成在内的所有五个步骤。

在这里插入图片描述
为了便于开发人员快速向STM32部署已训练的AI模型,意法半导体开发了一款使用简单易用且高效的工具 - STM32Cube.AI(也称X-CUBE-AI)。X-CUBE-AI可以分析并将已训练的神经网络转换为优化的C语言代码,并针对STM32目标进行自动测试。当然,X-CUBE-AI是一款非常强大的工具,后续文章中将介绍其更多功能。

为了展示几种不同的AI应用如何可以在STM32上直接运行,并加快STM32嵌入式开发人员的开发、验证和部署进程,意法半导体提供许多AI应用作为参考。

开发人员可以基于这些嵌入式AI应用软件包进行二次开发,快速实现自定义模型的部署。

更多细节将在后续文章中介绍。

AI开发工具和嵌入式应用软件包总结如下:

软件开发工具

产品编号说明
UNICO-GUIMEMS评估套件软件包
STM32CubeMXSTM32Cube初始化代码生成器
X-CUBE-AISTM32CubeMX的AI扩展包

嵌入式软件

产品编号说明
X-LINUX-AI用于AI计算机视觉应用的STM32 MPU OpenSTLinux扩展包
FP-AI-SENSING1STM32Cube功能包,用于超低功耗物联网节点,具有基于音频和运动传感的人工智能(AI)应用
FP-AI-VISION1STM32Cube功能包,用于高性能STM32,带有用于计算机视觉的人工智能(AI)应用
FP-AI-NANOEDG1STM32Cube的人工智能(AI)状态监测功能包
FP-AI-FACERECSTM32Cube的人工智能(AI)面部识别功能包
FP-AI-CTXAWARE1STM32Cube功能包,用于分布式人工智能(AI)的超低功耗情景感知

有STM32的地方就有Deep Edge AI。

STM32的所有MCU都支持AI模型的部署。对于计算能力较低的MCU,支持机器学习算法(ML)。对于计算能力较高的MCU,还支持神经网络模型(DL)。
在这里插入图片描述
可以运行应用示例的评估板列表总结如下:

产品评估工具

产品编号说明
B-L475E-IOT01ASTM32L4开发套件,包含IoT节点、低功耗无线解决方案、BLE、NFC、SubGHz、Wi-Fi
STEVAL-STLKT01V1SensorTile开发套件
STEVAL-MKSBOX1V1SensorTile.box无线多传感器开发套件
STEVAL-STWINKT1BSTWIN SensorTile无线工业节点开发套件和参考设计面向工业物联网应用
STM32L562E-DK开发套件,采用STM32L562QE MCU
STM32H747I-DISCO开发套件,采用STM32H747XI MCU
STM32MP157C-DK2开发套件,采用STM32MP157C MPU
STM32MP157F-DK2开发套件,采用STM32MP157F MPU
Avenger96基于STM32MP157A的Avenger96板源自96Boards
B-CAMS-OMV摄像头模块套装,用于STM32板

原文出处:
添加链接描述

这篇关于AI技术专题之一:意法半导体人工智能解决方案概述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/789114

相关文章

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

SpringBoot3匹配Mybatis3的错误与解决方案

《SpringBoot3匹配Mybatis3的错误与解决方案》文章指出SpringBoot3与MyBatis3兼容性问题,因未更新MyBatis-Plus依赖至SpringBoot3专用坐标,导致类冲... 目录SpringBoot3匹配MyBATis3的错误与解决mybatis在SpringBoot3如果

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

Python 字符串裁切与提取全面且实用的解决方案

《Python字符串裁切与提取全面且实用的解决方案》本文梳理了Python字符串处理方法,涵盖基础切片、split/partition分割、正则匹配及结构化数据解析(如BeautifulSoup、j... 目录python 字符串裁切与提取的完整指南 基础切片方法1. 使用切片操作符[start:end]2

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到

Java中InputStream重复使用问题的几种解决方案

《Java中InputStream重复使用问题的几种解决方案》在Java开发中,InputStream是用于读取字节流的类,在许多场景下,我们可能需要重复读取InputStream中的数据,这篇文章主... 目录前言1. 使用mark()和reset()方法(适用于支持标记的流)2. 将流内容缓存到字节数组

MybatisPlus中removeById删除数据库未变解决方案

《MybatisPlus中removeById删除数据库未变解决方案》MyBatisPlus中,removeById需实体类标注@TableId注解以识别数据库主键,若字段名不一致,应通过value属... 目录MyBATisPlus中removeBypythonId删除数据库未变removeById(Se