【深度学习笔记】6_2 循环神经网络RNN(recurrent neural network)

本文主要是介绍【深度学习笔记】6_2 循环神经网络RNN(recurrent neural network),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图

6.2 循环神经网络

上一节介绍的 n n n元语法中,时间步 t t t的词 w t w_t wt基于前面所有词的条件概率只考虑了最近时间步的 n − 1 n-1 n1个词。如果要考虑比 t − ( n − 1 ) t-(n-1) t(n1)更早时间步的词对 w t w_t wt的可能影响,我们需要增大 n n n。但这样模型参数的数量将随之呈指数级增长。

本节将介绍循环神经网络。它并非刚性地记忆所有固定长度的序列,而是通过隐藏状态来存储之前时间步的信息。首先我们回忆一下前面介绍过的多层感知机,然后描述如何添加隐藏状态来将它变成循环神经网络。

6.2.1 不含隐藏状态的神经网络

让我们考虑一个含单隐藏层的多层感知机。给定样本数为 n n n、输入个数(特征数或特征向量维度)为 d d d的小批量数据样本 X ∈ R n × d \boldsymbol{X} \in \mathbb{R}^{n \times d} XRn×d。设隐藏层的激活函数为 ϕ \phi ϕ,那么隐藏层的输出 H ∈ R n × h \boldsymbol{H} \in \mathbb{R}^{n \times h} HRn×h计算为

H = ϕ ( X W x h + b h ) , \boldsymbol{H} = \phi(\boldsymbol{X} \boldsymbol{W}_{xh} + \boldsymbol{b}_h), H=ϕ(XWxh+bh),

其中隐藏层权重参数 W x h ∈ R d × h \boldsymbol{W}_{xh} \in \mathbb{R}^{d \times h} WxhRd×h,隐藏层偏差参数 b h ∈ R 1 × h \boldsymbol{b}_h \in \mathbb{R}^{1 \times h} bhR1×h h h h为隐藏单元个数。上式相加的两项形状不同,因此将按照广播机制相加。把隐藏变量 H \boldsymbol{H} H作为输出层的输入,且设输出个数为 q q q(如分类问题中的类别数),输出层的输出为

O = H W h q + b q , \boldsymbol{O} = \boldsymbol{H} \boldsymbol{W}_{hq} + \boldsymbol{b}_q, O=HWhq+bq,

其中输出变量 O ∈ R n × q \boldsymbol{O} \in \mathbb{R}^{n \times q} ORn×q, 输出层权重参数 W h q ∈ R h × q \boldsymbol{W}_{hq} \in \mathbb{R}^{h \times q} WhqRh×q, 输出层偏差参数 b q ∈ R 1 × q \boldsymbol{b}_q \in \mathbb{R}^{1 \times q} bqR1×q。如果是分类问题,我们可以使用 softmax ( O ) \text{softmax}(\boldsymbol{O}) softmax(O)来计算输出类别的概率分布。

6.2.2 含隐藏状态的循环神经网络

现在我们考虑输入数据存在时间相关性的情况。假设 X t ∈ R n × d \boldsymbol{X}_t \in \mathbb{R}^{n \times d} XtRn×d是序列中时间步 t t t的小批量输入, H t ∈ R n × h \boldsymbol{H}_t \in \mathbb{R}^{n \times h} HtRn×h是该时间步的隐藏变量。与多层感知机不同的是,这里我们保存上一时间步的隐藏变量 H t − 1 \boldsymbol{H}_{t-1} Ht1,并引入一个新的权重参数 W h h ∈ R h × h \boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h} WhhRh×h,该参数用来描述在当前时间步如何使用上一时间步的隐藏变量。具体来说,时间步 t t t的隐藏变量的计算由当前时间步的输入和上一时间步的隐藏变量共同决定:

H t = ϕ ( X t W x h + H t − 1 W h h + b h ) . \boldsymbol{H}_t = \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} + \boldsymbol{b}_h). Ht=ϕ(XtWxh+Ht1Whh+bh).

与多层感知机相比,我们在这里添加了 H t − 1 W h h \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} Ht1Whh一项。由上式中相邻时间步的隐藏变量 H t \boldsymbol{H}_t Ht H t − 1 \boldsymbol{H}_{t-1} Ht1之间的关系可知,这里的隐藏变量能够捕捉截至当前时间步的序列的历史信息,就像是神经网络当前时间步的状态或记忆一样。因此,该隐藏变量也称为隐藏状态。由于隐藏状态在当前时间步的定义使用了上一时间步的隐藏状态,上式的计算是循环的。使用循环计算的网络即循环神经网络(recurrent neural network)。

循环神经网络有很多种不同的构造方法。含上式所定义的隐藏状态的循环神经网络是极为常见的一种。若无特别说明,本章中的循环神经网络均基于上式中隐藏状态的循环计算。在时间步 t t t,输出层的输出和多层感知机中的计算类似:

O t = H t W h q + b q . \boldsymbol{O}_t = \boldsymbol{H}_t \boldsymbol{W}_{hq} + \boldsymbol{b}_q. Ot=HtWhq+bq.

循环神经网络的参数包括隐藏层的权重 W x h ∈ R d × h \boldsymbol{W}_{xh} \in \mathbb{R}^{d \times h} WxhRd×h W h h ∈ R h × h \boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h} WhhRh×h和偏差 b h ∈ R 1 × h \boldsymbol{b}_h \in \mathbb{R}^{1 \times h} bhR1×h,以及输出层的权重 W h q ∈ R h × q \boldsymbol{W}_{hq} \in \mathbb{R}^{h \times q} WhqRh×q和偏差 b q ∈ R 1 × q \boldsymbol{b}_q \in \mathbb{R}^{1 \times q} bqR1×q。值得一提的是,即便在不同时间步,循环神经网络也始终使用这些模型参数。因此,循环神经网络模型参数的数量不随时间步的增加而增长。

图6.1展示了循环神经网络在3个相邻时间步的计算逻辑。在时间步 t t t,隐藏状态的计算可以看成是将输入 X t \boldsymbol{X}_t Xt和前一时间步隐藏状态 H t − 1 \boldsymbol{H}_{t-1} Ht1连结后输入一个激活函数为 ϕ \phi ϕ的全连接层。该全连接层的输出就是当前时间步的隐藏状态 H t \boldsymbol{H}_t Ht,且模型参数为 W x h \boldsymbol{W}_{xh} Wxh W h h \boldsymbol{W}_{hh} Whh的连结,偏差为 b h \boldsymbol{b}_h bh。当前时间步 t t t的隐藏状态 H t \boldsymbol{H}_t Ht将参与下一个时间步 t + 1 t+1 t+1的隐藏状态 H t + 1 \boldsymbol{H}_{t+1} Ht+1的计算,并输入到当前时间步的全连接输出层。

在这里插入图片描述

图6.1 含隐藏状态的循环神经网络

我们刚刚提到,隐藏状态中 X t W x h + H t − 1 W h h \boldsymbol{X}_t \boldsymbol{W}_{xh} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} XtWxh+Ht1Whh的计算等价于 X t \boldsymbol{X}_t Xt H t − 1 \boldsymbol{H}_{t-1} Ht1连结后的矩阵乘以 W x h \boldsymbol{W}_{xh} Wxh W h h \boldsymbol{W}_{hh} Whh连结后的矩阵。接下来,我们用一个具体的例子来验证这一点。首先,我们构造矩阵XW_xhHW_hh,它们的形状分别为(3, 1)、(1, 4)、(3, 4)和(4, 4)。将XW_xhHW_hh分别相乘,再把两个乘法运算的结果相加,得到形状为(3, 4)的矩阵。

import torchX, W_xh = torch.randn(3, 1), torch.randn(1, 4)
H, W_hh = torch.randn(3, 4), torch.randn(4, 4)
torch.matmul(X, W_xh) + torch.matmul(H, W_hh)

输出:

tensor([[ 5.2633, -3.2288,  0.6037, -1.3321],[ 9.4012, -6.7830,  1.0630, -0.1809],[ 7.0355, -2.2361,  0.7469, -3.4667]])

将矩阵XH按列(维度1)连结,连结后的矩阵形状为(3, 5)。可见,连结后矩阵在维度1的长度为矩阵XH在维度1的长度之和( 1 + 4 1+4 1+4)。然后,将矩阵W_xhW_hh按行(维度0)连结,连结后的矩阵形状为(5, 4)。最后将两个连结后的矩阵相乘,得到与上面代码输出相同的形状为(3, 4)的矩阵。

torch.matmul(torch.cat((X, H), dim=1), torch.cat((W_xh, W_hh), dim=0))

输出:

tensor([[ 5.2633, -3.2288,  0.6037, -1.3321],[ 9.4012, -6.7830,  1.0630, -0.1809],[ 7.0355, -2.2361,  0.7469, -3.4667]])

6.2.3 应用:基于字符级循环神经网络的语言模型

最后我们介绍如何应用循环神经网络来构建一个语言模型。设小批量中样本数为1,文本序列为“想”“要”“有”“直”“升”“机”。图6.2演示了如何使用循环神经网络基于当前和过去的字符来预测下一个字符。在训练时,我们对每个时间步的输出层输出使用softmax运算,然后使用交叉熵损失函数来计算它与标签的误差。在图6.2中,由于隐藏层中隐藏状态的循环计算,时间步3的输出 O 3 \boldsymbol{O}_3 O3取决于文本序列“想”“要”“有”。 由于训练数据中该序列的下一个词为“直”,时间步3的损失将取决于该时间步基于序列“想”“要”“有”生成下一个词的概率分布与该时间步的标签“直”。

在这里插入图片描述

图6.2 基于字符级循环神经网络的语言模型。

因为每个输入词是一个字符,因此这个模型被称为字符级循环神经网络(character-level recurrent neural network)。因为不同字符的个数远小于不同词的个数(对于英文尤其如此),所以字符级循环神经网络的计算通常更加简单。在接下来的几节里,我们将介绍它的具体实现。

小结

  • 使用循环计算的网络即循环神经网络。
  • 循环神经网络的隐藏状态可以捕捉截至当前时间步的序列的历史信息。
  • 循环神经网络模型参数的数量不随时间步的增加而增长。
  • 可以基于字符级循环神经网络来创建语言模型。

注:除代码外本节与原书此节基本相同,原书传送门

这篇关于【深度学习笔记】6_2 循环神经网络RNN(recurrent neural network)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787976

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶