【深度学习笔记】6_2 循环神经网络RNN(recurrent neural network)

本文主要是介绍【深度学习笔记】6_2 循环神经网络RNN(recurrent neural network),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图

6.2 循环神经网络

上一节介绍的 n n n元语法中,时间步 t t t的词 w t w_t wt基于前面所有词的条件概率只考虑了最近时间步的 n − 1 n-1 n1个词。如果要考虑比 t − ( n − 1 ) t-(n-1) t(n1)更早时间步的词对 w t w_t wt的可能影响,我们需要增大 n n n。但这样模型参数的数量将随之呈指数级增长。

本节将介绍循环神经网络。它并非刚性地记忆所有固定长度的序列,而是通过隐藏状态来存储之前时间步的信息。首先我们回忆一下前面介绍过的多层感知机,然后描述如何添加隐藏状态来将它变成循环神经网络。

6.2.1 不含隐藏状态的神经网络

让我们考虑一个含单隐藏层的多层感知机。给定样本数为 n n n、输入个数(特征数或特征向量维度)为 d d d的小批量数据样本 X ∈ R n × d \boldsymbol{X} \in \mathbb{R}^{n \times d} XRn×d。设隐藏层的激活函数为 ϕ \phi ϕ,那么隐藏层的输出 H ∈ R n × h \boldsymbol{H} \in \mathbb{R}^{n \times h} HRn×h计算为

H = ϕ ( X W x h + b h ) , \boldsymbol{H} = \phi(\boldsymbol{X} \boldsymbol{W}_{xh} + \boldsymbol{b}_h), H=ϕ(XWxh+bh),

其中隐藏层权重参数 W x h ∈ R d × h \boldsymbol{W}_{xh} \in \mathbb{R}^{d \times h} WxhRd×h,隐藏层偏差参数 b h ∈ R 1 × h \boldsymbol{b}_h \in \mathbb{R}^{1 \times h} bhR1×h h h h为隐藏单元个数。上式相加的两项形状不同,因此将按照广播机制相加。把隐藏变量 H \boldsymbol{H} H作为输出层的输入,且设输出个数为 q q q(如分类问题中的类别数),输出层的输出为

O = H W h q + b q , \boldsymbol{O} = \boldsymbol{H} \boldsymbol{W}_{hq} + \boldsymbol{b}_q, O=HWhq+bq,

其中输出变量 O ∈ R n × q \boldsymbol{O} \in \mathbb{R}^{n \times q} ORn×q, 输出层权重参数 W h q ∈ R h × q \boldsymbol{W}_{hq} \in \mathbb{R}^{h \times q} WhqRh×q, 输出层偏差参数 b q ∈ R 1 × q \boldsymbol{b}_q \in \mathbb{R}^{1 \times q} bqR1×q。如果是分类问题,我们可以使用 softmax ( O ) \text{softmax}(\boldsymbol{O}) softmax(O)来计算输出类别的概率分布。

6.2.2 含隐藏状态的循环神经网络

现在我们考虑输入数据存在时间相关性的情况。假设 X t ∈ R n × d \boldsymbol{X}_t \in \mathbb{R}^{n \times d} XtRn×d是序列中时间步 t t t的小批量输入, H t ∈ R n × h \boldsymbol{H}_t \in \mathbb{R}^{n \times h} HtRn×h是该时间步的隐藏变量。与多层感知机不同的是,这里我们保存上一时间步的隐藏变量 H t − 1 \boldsymbol{H}_{t-1} Ht1,并引入一个新的权重参数 W h h ∈ R h × h \boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h} WhhRh×h,该参数用来描述在当前时间步如何使用上一时间步的隐藏变量。具体来说,时间步 t t t的隐藏变量的计算由当前时间步的输入和上一时间步的隐藏变量共同决定:

H t = ϕ ( X t W x h + H t − 1 W h h + b h ) . \boldsymbol{H}_t = \phi(\boldsymbol{X}_t \boldsymbol{W}_{xh} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} + \boldsymbol{b}_h). Ht=ϕ(XtWxh+Ht1Whh+bh).

与多层感知机相比,我们在这里添加了 H t − 1 W h h \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} Ht1Whh一项。由上式中相邻时间步的隐藏变量 H t \boldsymbol{H}_t Ht H t − 1 \boldsymbol{H}_{t-1} Ht1之间的关系可知,这里的隐藏变量能够捕捉截至当前时间步的序列的历史信息,就像是神经网络当前时间步的状态或记忆一样。因此,该隐藏变量也称为隐藏状态。由于隐藏状态在当前时间步的定义使用了上一时间步的隐藏状态,上式的计算是循环的。使用循环计算的网络即循环神经网络(recurrent neural network)。

循环神经网络有很多种不同的构造方法。含上式所定义的隐藏状态的循环神经网络是极为常见的一种。若无特别说明,本章中的循环神经网络均基于上式中隐藏状态的循环计算。在时间步 t t t,输出层的输出和多层感知机中的计算类似:

O t = H t W h q + b q . \boldsymbol{O}_t = \boldsymbol{H}_t \boldsymbol{W}_{hq} + \boldsymbol{b}_q. Ot=HtWhq+bq.

循环神经网络的参数包括隐藏层的权重 W x h ∈ R d × h \boldsymbol{W}_{xh} \in \mathbb{R}^{d \times h} WxhRd×h W h h ∈ R h × h \boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h} WhhRh×h和偏差 b h ∈ R 1 × h \boldsymbol{b}_h \in \mathbb{R}^{1 \times h} bhR1×h,以及输出层的权重 W h q ∈ R h × q \boldsymbol{W}_{hq} \in \mathbb{R}^{h \times q} WhqRh×q和偏差 b q ∈ R 1 × q \boldsymbol{b}_q \in \mathbb{R}^{1 \times q} bqR1×q。值得一提的是,即便在不同时间步,循环神经网络也始终使用这些模型参数。因此,循环神经网络模型参数的数量不随时间步的增加而增长。

图6.1展示了循环神经网络在3个相邻时间步的计算逻辑。在时间步 t t t,隐藏状态的计算可以看成是将输入 X t \boldsymbol{X}_t Xt和前一时间步隐藏状态 H t − 1 \boldsymbol{H}_{t-1} Ht1连结后输入一个激活函数为 ϕ \phi ϕ的全连接层。该全连接层的输出就是当前时间步的隐藏状态 H t \boldsymbol{H}_t Ht,且模型参数为 W x h \boldsymbol{W}_{xh} Wxh W h h \boldsymbol{W}_{hh} Whh的连结,偏差为 b h \boldsymbol{b}_h bh。当前时间步 t t t的隐藏状态 H t \boldsymbol{H}_t Ht将参与下一个时间步 t + 1 t+1 t+1的隐藏状态 H t + 1 \boldsymbol{H}_{t+1} Ht+1的计算,并输入到当前时间步的全连接输出层。

在这里插入图片描述

图6.1 含隐藏状态的循环神经网络

我们刚刚提到,隐藏状态中 X t W x h + H t − 1 W h h \boldsymbol{X}_t \boldsymbol{W}_{xh} + \boldsymbol{H}_{t-1} \boldsymbol{W}_{hh} XtWxh+Ht1Whh的计算等价于 X t \boldsymbol{X}_t Xt H t − 1 \boldsymbol{H}_{t-1} Ht1连结后的矩阵乘以 W x h \boldsymbol{W}_{xh} Wxh W h h \boldsymbol{W}_{hh} Whh连结后的矩阵。接下来,我们用一个具体的例子来验证这一点。首先,我们构造矩阵XW_xhHW_hh,它们的形状分别为(3, 1)、(1, 4)、(3, 4)和(4, 4)。将XW_xhHW_hh分别相乘,再把两个乘法运算的结果相加,得到形状为(3, 4)的矩阵。

import torchX, W_xh = torch.randn(3, 1), torch.randn(1, 4)
H, W_hh = torch.randn(3, 4), torch.randn(4, 4)
torch.matmul(X, W_xh) + torch.matmul(H, W_hh)

输出:

tensor([[ 5.2633, -3.2288,  0.6037, -1.3321],[ 9.4012, -6.7830,  1.0630, -0.1809],[ 7.0355, -2.2361,  0.7469, -3.4667]])

将矩阵XH按列(维度1)连结,连结后的矩阵形状为(3, 5)。可见,连结后矩阵在维度1的长度为矩阵XH在维度1的长度之和( 1 + 4 1+4 1+4)。然后,将矩阵W_xhW_hh按行(维度0)连结,连结后的矩阵形状为(5, 4)。最后将两个连结后的矩阵相乘,得到与上面代码输出相同的形状为(3, 4)的矩阵。

torch.matmul(torch.cat((X, H), dim=1), torch.cat((W_xh, W_hh), dim=0))

输出:

tensor([[ 5.2633, -3.2288,  0.6037, -1.3321],[ 9.4012, -6.7830,  1.0630, -0.1809],[ 7.0355, -2.2361,  0.7469, -3.4667]])

6.2.3 应用:基于字符级循环神经网络的语言模型

最后我们介绍如何应用循环神经网络来构建一个语言模型。设小批量中样本数为1,文本序列为“想”“要”“有”“直”“升”“机”。图6.2演示了如何使用循环神经网络基于当前和过去的字符来预测下一个字符。在训练时,我们对每个时间步的输出层输出使用softmax运算,然后使用交叉熵损失函数来计算它与标签的误差。在图6.2中,由于隐藏层中隐藏状态的循环计算,时间步3的输出 O 3 \boldsymbol{O}_3 O3取决于文本序列“想”“要”“有”。 由于训练数据中该序列的下一个词为“直”,时间步3的损失将取决于该时间步基于序列“想”“要”“有”生成下一个词的概率分布与该时间步的标签“直”。

在这里插入图片描述

图6.2 基于字符级循环神经网络的语言模型。

因为每个输入词是一个字符,因此这个模型被称为字符级循环神经网络(character-level recurrent neural network)。因为不同字符的个数远小于不同词的个数(对于英文尤其如此),所以字符级循环神经网络的计算通常更加简单。在接下来的几节里,我们将介绍它的具体实现。

小结

  • 使用循环计算的网络即循环神经网络。
  • 循环神经网络的隐藏状态可以捕捉截至当前时间步的序列的历史信息。
  • 循环神经网络模型参数的数量不随时间步的增加而增长。
  • 可以基于字符级循环神经网络来创建语言模型。

注:除代码外本节与原书此节基本相同,原书传送门

这篇关于【深度学习笔记】6_2 循环神经网络RNN(recurrent neural network)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787976

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

Java中的for循环高级用法

《Java中的for循环高级用法》本文系统解析Java中传统、增强型for循环、StreamAPI及并行流的实现原理与性能差异,并通过大量代码示例展示实际开发中的最佳实践,感兴趣的朋友一起看看吧... 目录前言一、基础篇:传统for循环1.1 标准语法结构1.2 典型应用场景二、进阶篇:增强型for循环2.

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python循环结构全面解析

《Python循环结构全面解析》循环中的代码会执行特定的次数,或者是执行到特定条件成立时结束循环,或者是针对某一集合中的所有项目都执行一次,这篇文章给大家介绍Python循环结构解析,感兴趣的朋友跟随... 目录for-in循环while循环循环控制语句break语句continue语句else子句嵌套的循