Python与FPGA——图像锐化

2024-03-08 12:04
文章标签 python 图像 fpga 锐化

本文主要是介绍Python与FPGA——图像锐化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、图像锐化
  • 二、Python robert锐化
  • 三、Python sobel锐化
  • 四、Python laplacian锐化
  • 五、FPGA sobel锐化
  • 总结


前言

  在增强图像之前一般会先对图像进行平滑处理以减少或消除噪声,图像的能量主要集中在低频部分,而噪声和图像边缘信息的能量主要集中在高频部分。因此,平滑处理会使原始的图像边缘和轮廓变得模糊。为了减少不利效果的影响,需要利用图像锐化技术。


一、图像锐化

  图像锐化其实就是使用robert,sobel,laplacian这些人发明的窗口,进行图像的处理。图像锐化过程和sobel边缘检测的过程类似,可以移步至《Python与FPGA——sobel边缘检测》课程,一探究竟。

一阶微分的边缘检测
  图像f(x, y)在像素(x, y)梯度的定义为
G = ∂ f ∂ x + ∂ f ∂ y G = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} G=xf+yf
也可以用差分来替代微分,即
∂ f ∂ x = f ( i + 1 , j ) − f ( i , j ) \frac{\partial f}{\partial x} = f(i + 1, j) - f(i, j) xf=f(i+1,j)f(i,j)
∂ f ∂ y = f ( i , j + 1 ) − f ( i , j ) \frac{\partial f}{\partial y} = f(i, j + 1) - f(i, j) yf=f(i,j+1)f(i,j)
梯度的幅值即模值,为
∣ G ∣ = ( ∂ f ∂ x ) 2 + ( ∂ f ∂ y ) 2 = [ f ( i + 1 , j ) − f ( i , j ) ] 2 + [ f ( i , j ) − f ( i , j ) ] 2 |G| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2} = \sqrt{[f(i + 1, j) - f(i, j)]^2 + [f(i, j ) - f(i, j)]^2} G=(xf)2+(yf)2 =[f(i+1,j)f(i,j)]2+[f(i,j)f(i,j)]2
梯度方向为
θ = a r c t a n ( ∂ f ∂ y / ∂ f ∂ x ) = a r c t a n [ f ( i , j + 1 ) − f ( i , j ) f ( i + 1 , j ) − f ( i , j ) ] \theta = arctan(\frac{\partial f}{\partial y}/\frac{\partial f}{\partial x}) = arctan[\frac{f(i, j + 1) - f(i, j)}{f(i + 1, j) - f(i, j)}] θ=arctan(yf/xf)=arctan[f(i+1,j)f(i,j)f(i,j+1)f(i,j)]
图像f(i, j)处的梯度g为
g ( i , j ) = G [ f ( i , j ) ] g(i, j) = G[f(i, j)] g(i,j)=G[f(i,j)]
使用 g ( i , j ) g(i, j) g(i,j)去替代原来的像素。
  一阶导算子有robert算子,perwitt算子,sobel算子。
1. Roberts算子
G x = [ 1 0 0 − 1 ] G y = [ 0 − 1 1 0 ] G_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad\quad\quad G_y = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} Gx=[1001]Gy=[0110]
2. Prewitt算子
G x = [ − 1 0 1 − 1 0 1 − 1 0 1 ] G y = [ − 1 − 1 − 1 0 0 0 1 1 1 ] G_x = \begin{bmatrix} -1 & 0 & 1\\ -1 & 0 & 1\\ -1 & 0 & 1 \end{bmatrix} \quad\quad\quad G_y = \begin{bmatrix} -1 & -1 & -1\\ 0 & 0 & 0\\ 1 & 1 & 1 \end{bmatrix} Gx=111000111Gy=101101101
3. Sobel算子
G x = [ − 1 0 + 1 − 2 0 + 2 − 1 0 + 1 ] G y = [ + 1 + 2 + 1 0 0 0 − 1 − 2 1 ] G_x = \begin{bmatrix} -1 & 0 & +1\\ -2 & 0 & +2\\ -1 & 0 & +1 \end{bmatrix} \quad\quad\quad G_y = \begin{bmatrix} +1 & +2 & +1\\ 0 & 0 & 0\\ -1 & -2 & 1 \end{bmatrix} Gx=121000+1+2+1Gy=+101+202+101

二阶微分的边缘检测
  二阶微分公式用差分法,推理如下
∂ 2 f ∂ x 2 = 2 f ( x , y ) − f ( x − 1 , y ) − f ( x + 1 , y ) \frac{\partial^2 f}{\partial x^2}=2f(x,y)-f(x-1,y)-f(x+1, y) x22f=2f(x,y)f(x1,y)f(x+1,y)
∂ 2 f ∂ y 2 = 2 f ( x , y ) − f ( x , y − 1 ) − f ( x , y + 1 ) \frac{\partial^2 f}{\partial y^2}=2f(x,y)-f(x,y-1)-f(x, y+1) y22f=2f(x,y)f(x,y1)f(x,y+1)
▽ 2 f = 4 f ( x , y ) − [ f ( x − 1 , y ) + f ( x , y − 1 ) + f ( x , y + 1 ) + f ( x + 1 , y ) ] \triangledown^2f=4f(x,y)-[f(x-1,y)+f(x,y-1)+f(x,y+1)+f(x+1,y)] 2f=4f(x,y)[f(x1,y)+f(x,y1)+f(x,y+1)+f(x+1,y)]
符合二阶微分的算子是laplacian。

G x = [ 0 − 1 0 − 1 4 − 1 0 − 1 0 ] G y = [ − 1 − 1 − 1 − 1 8 − 1 − 1 − 1 − 1 ] G_x = \begin{bmatrix} 0 & -1 & 0\\ -1 & 4 & -1\\ 0 & -1 & 0 \end{bmatrix} \quad\quad\quad G_y = \begin{bmatrix} -1 & -1 & -1\\ -1 & 8 & -1\\ -1 & -1 & -1 \end{bmatrix} Gx=010141010Gy=111181111

二、Python robert锐化

import numpy as np
import matplotlib.pyplot as plt
def image_gray(image):gray = np.dot(image[:, :, ...], [0.299, 0.587, 0.114])#等同0.299 * image[:, :, 0] + 0.587 * image[:, :, 1] + 0.114 * image[:, :, 2]return gray.astype(np.uint8)def robert_sharpen(image, gx, gy):h, w = image.shapen, n = gx.shapefiltered_image = np.zeros((h, w))m = int(n / 2)for i in range(m, h - m):for j in range(m, w - m):   gx_value = np.sum(np.multiply(gx, image[i - m: i + m, j - m: j + m]))gy_value = np.sum(np.multiply(gy, image[i - m: i + m, j - m: j + m]))gxy_value = np.sqrt(gx_value ** 2 + gy_value ** 2)filtered_image[i, j] = gxy_valuereturn filtered_image.astype(np.uint8)img = plt.imread("lenna.png")
img = img * 255#图像是[0-1]--->[0-255],确认一下自己的图像是[0-1]还是[0-255]
img = img.astype(np.uint8)
gx = np.array([[1, 0],[0, -1]])
gy = np.array([[0, 1],[-1, 0]])
gray = image_gray(img)
robert_image = robert_sharpen(gray, gx, gy)
fig = plt.figure(figsize=(10, 6))
ax = plt.subplot(1, 2, 1)
ax.set_title("raw image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(gray, cmap="gray")
ax = plt.subplot(1, 2, 2)
ax.set_title("robert image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(robert_image, cmap="gray")

在这里插入图片描述

三、Python sobel锐化

import numpy as np
import matplotlib.pyplot as plt
def image_gray(image):gray = np.dot(image[:, :, ...], [0.299, 0.587, 0.114])#等同0.299 * image[:, :, 0] + 0.587 * image[:, :, 1] + 0.114 * image[:, :, 2]return gray.astype(np.uint8)def sobel_sharpen(image, gx, gy):h, w = image.shapen, n = gx.shapefiltered_image = np.zeros((h, w))m = int((n-1) / 2)for i in range(m, h - m):for j in range(m, w - m):   gx_value = np.sum(np.multiply(gx, image[i - m: i + m + 1, j - m: j + m + 1]))gy_value = np.sum(np.multiply(gy, image[i - m: i + m + 1, j - m: j + m + 1]))gxy_value = np.sqrt(gx_value ** 2 + gy_value ** 2)filtered_image[i, j] = gxy_valuereturn filtered_image.astype(np.uint8)img = plt.imread("lenna.png")
img = img * 255#图像是[0-1]--->[0-255],确认一下自己的图像是[0-1]还是[0-255]
img = img.astype(np.uint8)
gx = np.array([[-1, 0, 1],[-2, 0, 2],[-1, 0, 1]])
gy = np.array([[-1, -2, -1],[0, 0, 0],[1, 2, 1]])
gray = image_gray(img)
sobel_image = sobel_sharpen(gray, gx, gy)
fig = plt.figure(figsize=(10, 6))
ax = plt.subplot(1, 2, 1)
ax.set_title("raw image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(gray, cmap="gray")
ax = plt.subplot(1, 2, 2)
ax.set_title("sobel image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(sobel_image, cmap="gray")

在这里插入图片描述

四、Python laplacian锐化

import numpy as np
import matplotlib.pyplot as plt
def image_gray(image):gray = np.dot(image[:, :, ...], [0.299, 0.587, 0.114])#等同0.299 * image[:, :, 0] + 0.587 * image[:, :, 1] + 0.114 * image[:, :, 2]return gray.astype(np.uint8)def laplacian_sharpen(image, gx, gy):h, w = image.shapen, n = gx.shapefiltered_image = np.zeros((h, w))m = int((n-1) / 2)for i in range(m, h - m):for j in range(m, w - m):   gx_value = np.sum(np.multiply(gx, image[i - m: i + m + 1, j - m: j + m + 1]))gy_value = np.sum(np.multiply(gy, image[i - m: i + m + 1, j - m: j + m + 1]))gxy_value = np.sqrt(gx_value ** 2 + gy_value ** 2)filtered_image[i, j] = gxy_valuereturn filtered_image.astype(np.uint8)img = plt.imread("lenna.png")
img = img * 255#图像是[0-1]--->[0-255],确认一下自己的图像是[0-1]还是[0-255]
img = img.astype(np.uint8)
gx = np.array([[0, -1, 0],[-1, 4, -1],[0, -1, 0]])
gy = np.array([[-1, -1, -1],[-1, 8, -1],[-1, -1, -1]])
gray = image_gray(img)
sobel_image = sobel_sharpen(gray, gx, gy)
fig = plt.figure(figsize=(10, 6))
ax = plt.subplot(1, 2, 1)
ax.set_title("raw image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(gray, cmap="gray")
ax = plt.subplot(1, 2, 2)
ax.set_title("sobel image")
ax.set_xlabel("width")
ax.set_ylabel("height")
plt.imshow(sobel_image, cmap="gray")

在这里插入图片描述

五、FPGA sobel锐化

//3*3图像
//P11   P12   P13
//P21   P22   P23
//P31   P32   P33//Gx算子
//-1     0     1
//-2     0     2
//-1     0     1
//Gx = -P11 + P13 - 2*P21 + 2*P23 - P31 + P33
//Gx = (P13 - P11) + 2*(P23 - P21) + (P33 - P31)//Gy算子
//1      2     1
//0      0     0
//-1     -2    -1
//Gy = P11 + 2*P12 + P13 - P31 - 2*P32 - P33
//Gy = (P11 - P31) + 2*(P12 - P32) + (P13 - P33)
module  ycbcr_sobel_sharpen
(input	wire			sys_clk		,	//系统时钟,频率为50MHZinput	wire			sys_rst_n	,	//系统复位,低电平有效input	wire			rgb_valid	,	//RGB565图像显示有效信号input	wire	[7:0]	y_data		,	//Y分量input	wire	[11:0]	pixel_x		,	//有效显示区域横坐标input	wire	[11:0]	pixel_y		,	//有效显示区域纵坐标output	reg		[15:0]	sobel_data		//Sobel算法处理后的图像数据
);reg				y_valid		;	//Y分量有效信号
//shift ram
wire	[7:0]	data_row1	;	//移位寄存器第一行数据
wire	[7:0]	data_row2	;	//移位寄存器第二行数据
wire	[7:0]	data_row3	;	//移位寄存器第三行数据
//3*3像素数据,左上角至右下角共9个数据
reg		[7:0]	p11			;	//3*3第1个像素数据
reg		[7:0]	p12			;	//3*3第2个像素数据
reg		[7:0]	p13			;	//3*3第3个像素数据
reg		[7:0]	p21			;	//3*3第4个像素数据
reg		[7:0]	p22			;	//3*3第5个像素数据
reg		[7:0]	p23			;	//3*3第6个像素数据
reg		[7:0]	p31			;	//3*3第7个像素数据
reg		[7:0]	p32			;	//3*3第8个像素数据
reg		[7:0]	p33			;	//3*3第9个像素数据
//Sobel算子
wire	[15:0]	Gx			;	//水平梯度值
wire	[15:0]	Gy			;	//数值梯度值
wire	[7:0]	Gxy			;	//总体梯度值assign  data_row3 = y_data  ;
assign  Gx = (p13 - p11) + 2*(p23 - p21) + (p33 - p31)  ;
assign  Gy = (p11 - p31) + 2*(p12 - p32) + (p13 - p33)  ;//设定第一行、第二行,第一列、第二列显示全白色
always@(*)if((pixel_y == 12'd0)||(pixel_y == 12'd1)||(pixel_x == 12'd2)||(pixel_x == 12'd3))sobel_data = 16'hffff  ;elsesobel_data = {Gxy[7:3],Gxy[7:2],Gxy[7:3]}  ;//锐化核心代码always@(posedge sys_clk or negedge sys_rst_n)if(sys_rst_n == 1'b0)y_valid  <=  1'b0  ;elsey_valid  <=  rgb_valid  ;always@(posedge sys_clk or negedge sys_rst_n)if(sys_rst_n == 1'b0)begin{p11,p12,p13}  <=  24'd0  ;{p21,p22,p23}  <=  24'd0  ;{p31,p32,p33}  <=  24'd0  ;endelse  if(y_valid == 1'b1)begin{p11,p12,p13}  <= {p12,p13,data_row1}  ;{p21,p22,p23}  <= {p22,p23,data_row2}  ;{p31,p32,p33}  <= {p32,p33,data_row3}  ;end	elsebegin{p11,p12,p13}  <=  24'd0  ;{p21,p22,p23}  <=  24'd0  ;{p31,p32,p33}  <=  24'd0  ;end		shift_ram_gen  shift_ram_gen_inst
(.clock 		(sys_clk	),.shiftin	(data_row3	),.shiftout 	(			),.taps0x 	(data_row2	),.taps1x 	(data_row1	)
);sqrt_gen  sqrt_gen_inst 
(.radical	(Gx*Gx + Gy*Gy),.q 			(Gxy	),.remainder 	()
);endmodule

在这里插入图片描述


总结

  图像锐化就到此结束,剩下的交给小伙伴自行实现。Python的prewitt实现;FPGA的robert、prewitt、laplacian算子实现,你都可以尝试。

这篇关于Python与FPGA——图像锐化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787026

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar