密集立体匹配20年论文整理

2024-03-08 11:59

本文主要是介绍密集立体匹配20年论文整理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://blog.csdn.net/xuyuhua1985/article/details/26283389

 

1994

Kanade T, Okutomi M. A stereo matching algorithm with an adaptive window: Theory and experiment[J]. TPAMI, 1994, 16(9): 920-932.

被引用次数:1204

1995

Luo A, Burkhardt H. An intensity-based cooperative bidirectional stereo matching with simultaneous detection of discontinuities and occlusions[J]. IJCV, 1995, 15(3): 171-188.

被引用次数:68
1996

Koschan A, Rodehorst V, Spiller K. Color stereo vision using hierarchical block matching and active color illumination[C]// ICPR, 1996, 1: 835-839.

被引用次数:67
1997

1998

Pritchett P, Zisserman A. Wide baseline stereo matching[C]//Computer Vision, 1998. Sixth International Conference on. IEEE, 1998: 754-760.

被引用次数:309
Scharstein D, Szeliski R. Stereo matching with nonlinear diffusion[J]. International Journal of Computer Vision, 1998, 28(2): 155-174.

被引用次数:309
2000

Zitnick C L, Kanade T. A cooperative algorithm for stereo matching and occlusion detection[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000, 22(7): 675-684.

被引用次数:519
Tuytelaars T, Van Gool L J. Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions[C]//BMVC. 2000, 412.

被引用次数:519
2001

Kang S B, Szeliski R, Chai J. Handling occlusions in dense multi-view stereo[C]//Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. IEEE, 2001, 1: I-103-I-110 vol. 1.

被引用次数:277
2002

Sun J, Shum H Y, Zheng N N. Stereo matching using belief propagation[M]//Computer Vision—ECCV 2002. Springer Berlin Heidelberg, 2002: 510-524.

被引用次数:171

Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International journal of computer vision, 2002, 47(1-3): 7-42.

被引用次数:4456
2003

Sun J, Zheng N N, Shum H Y. Stereo matching using belief propagation[J]. TPAMI, 2003, 25(7): 787-800.

被引用次数:858
Veksler O. Fast variable window for stereo correspondence using integral images[C]// CVPR 2003, 1: I-556-I-561 vol. 1.

被引用次数:299
2004

Hong L, Chen G. Segment-based stereo matching using graph cuts[C]//Computer Vision and Pattern Recognition, 2004. CVPR 2004. IEEE, 2004, 1: I-74-I-81 Vol. 1.

被引用次数:272
2005

Hirschmuller H. Accurate and efficient stereo processing by semi-global matching and mutual information[C]// CVPR 2005. 2: 807-814.被引用次数:394

经典的Semi-Global方法!

Sun J, Li Y, Kang S B, et al. Symmetric stereo matching for occlusion handling[C]// CVPR 2005. 2: 399-406.

 被引用次数:347

2006

Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]//  ICPR 2006, 3: 15-18.

被引用次数:595

这篇论文很厉害,在middleburry2.0上一直占据前10名。

Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search[J]. IEEE TPAMI, 2006, 28(4): 650-656. 

被引用次数:595

首此采用双边滤波器做立体匹配。从此以后,引起了很多的自适应权重滤波方法。
2007

Hirschmuller H, Scharstein D. Evaluation of cost functions for stereo matching[C]// CVPR 2007: 1-8.

被引用次数:354

Gong M, Yang R, Wang L, et al. A performance study on different cost aggregation approaches used in real-time stereo matching[J]. IJCV, 2007, 75(2): 283-296.

被引用次数:139
Gehrig S K, Franke U. Improving stereo sub-pixel accuracy for long range stereo[C]//Computer Vision, 2007. ICCV 2007: 1-7.

被引用次数:38
Mattoccia S, Tombari F, Di Stefano L. Stereo vision enabling precise border localization within a scanline optimization framework[M]// ACCV 2007. : 517-527.

被引用次数:32
Goesele M, Snavely N, Curless B, et al. Multi-view stereo for community photo collections[C]//  ICCV 2007: 1-8.

被引用次数:301
Hernández C, Vogiatzis G, Cipolla R. Probabilistic visibility for multi-view stereo[C]// CVPR 2007.: 1-8.

2008

Wang Z F, Zheng Z G. A region based stereo matching algorithm using cooperative optimization[C]// CVPR 2008: 1-8.

被引用次数:213
Xu L, Jia J. Stereo matching: An outlier confidence approach[M]// ECCV 2008: 775-787.被引用次数:36
Min D, Sohn K. Cost aggregation and occlusion handling with WLS in stereo matching[J]. Image Processing, IEEE Transactions on, 2008, 17(8): 1431-1442.
Pollefeys M, Nistér D, Frahm J M, et al. Detailed real-time urban 3d reconstruction from video[J]. IJCV, 2008, 78(2-3): 143-167.

被引用次数:361
Bradley D, Boubekeur T, Heidrich W. Accurate multi-view reconstruction using robust binocular stereo and surface meshing[C]//CVPR 2008. : 1-8.
2009

Yang Q, Wang L, Yang R, et al. Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling[J]. TPAMI, 2009, 31(3): 492-504.

被引用次数:406
Zhang G, Jia J, Wong T T, et al. Consistent depth maps recovery from a video sequence[J]. TPAMI, 2009, 31(6): 974-988.

被引用次数:140
Hiep V H, Keriven R, Labatut P, et al. Towards high-resolution large-scale multi-view stereo[C]// CVPR 2009.: 1430-1437.


Sinha S N, Steedly D, Szeliski R. Piecewise planar stereo for image-based rendering[C]//ICCV. 2009: 1881-1888.


2010

Yang Q, Wang L, Ahuja N. A constant-space belief propagation algorithm for stereo matching[C]// CVPR, 2010 IEEE Conference on. IEEE, 2010: 1458-1465.

Frahm J M, Fite-Georgel P, Gallup D, et al. Building Rome on a cloudless day[M]// ECCV 2010: 368-381.
Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis[J]. TPAMI 2010, 32(8): 1362-1376.
Beeler T, Bickel B, Beardsley P, et al. High-quality single-shot capture of facial geometry[J]. ACM Transactions on Graphics (TOG), 2010, 29(4): 40.

2011

Geiger A, Roser M, Urtasun R. Efficient large-scale stereo matching[M]// ACCV 2010: 25-38.

被引用次数:144

Mei X, Sun X, Zhou M, et al. On building an accurate stereo matching system on graphics hardware[C]// ICCV Workshops, 2011: 467-474.

被引用次数:112
2012

Yang Q. A non-local cost aggregation method for stereo matching[C]// CVPR 2012: 1402-1409.

被引用次数:44
2013

Ma Z, He K, Wei Y, et al. Constant Time Weighted Median Filtering for Stereo Matching and Beyond[C]. ICCV 2013.

Hosni A, Rhemann C, Bleyer M, et al. Fast cost-volume filtering for visual correspondence and beyond[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2013, 35(2): 504-511.
2014

Kang Zhang et al. Cross-Scale Cost Aggregation for Stereo Matching. CVPR 2014.
Tatsunori Taniai et al. Graph Cut based Continuous Stereo Matching using Locally Shared Labels. CVPR 2014.

2015

Leveraging Stereo Matching With Learning-Based Confidence Measures.
Min-Gyu Park, Kuk-Jin Yoon. CVPR 2015

Event-Driven Stereo Matching for Real-Time 3D Panoramic Vision.
Stephan Schraml, Ahmed Nabil Belbachir, Horst Bischof. CVPR 2015

Efficient Minimal-Surface Regularization of Perspective Depth Maps in Variational Stereo.
Gottfried Graber, Jonathan Balzer, Stefano Soatto, Thomas Pock. CVPR 2015

Computing the Stereo Matching Cost With a Convolutional Neural Network.

Jure ?bontar, Yann LeCun. CVPR 2015

第1篇用深度学习做立体匹配的论文。用CNN计算Cost。

Exact Bias Correction and Covariance Estimation for Stereo Vision.
Charles Freundlich, Michael Zavlanos, Philippos Mordohai. CVPR 2015

 2016

PMSC: PatchMatch-based superpixel cut for accurate stereo matching[J]. 

Li L, Zhang S, Yu X, et al. 

IEEE Transactions on Circuits and Systems for Video Technology, 2016.

从2016年开始,基于深度学习的视差估计方法越来越多了。

Mayer N, Ilg E, Hausser P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 4040-4048.

这篇论文用合成的数据集来训练端到端的视差估计网络。

2017 

GC-Net

Kendall A, Martirosyan H, Dasgupta S, et al. End-to-end learning of geometry and context for deep stereo regression[J]. CoRR, vol. abs/1703.04309, 2017.

2018

Khamis S, Fanello S, Rhemann C, et al. Stereonet: Guided hierarchical refinement for real-time edge-aware depth prediction[C]//Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany. 2018: 8-14.

(号称60fps)

2018

iResNet

Liang Z, Feng Y, Guo Y, et al. Learning for disparity estimation through feature constancy[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 2811-2820.

2019

GA-Net

Zhang F, Prisacariu V, Yang R, et al. GA-Net: Guided Aggregation Net for End-to-end Stereo Matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 185-194.

Zhang F, Qi X, Yang R, et al. Domain-invariant Stereo Matching Networks[J]. arXiv preprint arXiv:1911.13287, 2019.

Duggal S, Wang S, Ma W C, et al. Deeppruner: Learning efficient stereo matching via differentiable patchmatch[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 4384-4393.

2020

AA-Net

Xu H, Zhang J. AANet: Adaptive Aggregation Network for Efficient Stereo Matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1959-1968.

 

这篇关于密集立体匹配20年论文整理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787020

相关文章

MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)

《MyBatis的xml中字符串类型判空与非字符串类型判空处理方式(最新整理)》本文给大家介绍MyBatis的xml中字符串类型判空与非字符串类型判空处理方式,本文给大家介绍的非常详细,对大家的学习或... 目录完整 Hutool 写法版本对比优化为什么status变成Long?为什么 price 没事?怎

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python38个游戏开发库整理汇总

《Python38个游戏开发库整理汇总》文章介绍了多种Python游戏开发库,涵盖2D/3D游戏开发、多人游戏框架及视觉小说引擎,适合不同需求的开发者入门,强调跨平台支持与易用性,并鼓励读者交流反馈以... 目录PyGameCocos2dPySoyPyOgrepygletPanda3DBlenderFife

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

SpringSecurity整合redission序列化问题小结(最新整理)

《SpringSecurity整合redission序列化问题小结(最新整理)》文章详解SpringSecurity整合Redisson时的序列化问题,指出需排除官方Jackson依赖,通过自定义反序... 目录1. 前言2. Redission配置2.1 RedissonProperties2.2 Red

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注