b站小土堆pytorch学习记录—— P23-P24 损失函数、反向传播和优化器

2024-03-08 07:52

本文主要是介绍b站小土堆pytorch学习记录—— P23-P24 损失函数、反向传播和优化器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、损失函数
    • 1.简要介绍
    • 2.代码
  • 二、优化器
    • 1.简要介绍
    • 2.代码

一、损失函数

1.简要介绍

可参考博客:

常见的损失函数总结

损失函数的全面介绍

pytorch学习之十九种损失函数

损失函数(Loss Function)是用来衡量模型预测输出与实际标签之间的差异或误差程度的函数。在深度学习中,损失函数通常被设计为一个标量值,表示模型的预测值与真实标签之间的差异。

损失函数的选择对于训练深度学习模型非常重要,因为它直接影响着模型的训练效果和性能。在训练过程中,通过最小化损失函数来调整模型参数,使模型的预测结果逐渐接近真实标签,从而提高模型的准确性。

常见的损失函数:

均方误差(Mean Squared Error,MSE):用于回归任务,计算预测值与真实值之间的平方差的均值。

交叉熵损失函数(Cross Entropy Loss):用于分类任务,衡量模型输出的概率分布与真实标签的差异。

对数损失函数(Log Loss):也常用于二分类或多分类问题,衡量模型输出类别的概率与真实标签之间的关系。

Hinge损失函数:通常用于支持向量机(SVM)中,用于处理二分类问题。

Kullback-Leibler 散度(KL 散度):用于衡量两个概率分布之间的相似度。

2.代码

import torch
from torch import nn# 定义输入张量和目标张量
inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
targets = torch.tensor([1, 2, 5], dtype=torch.float32)# 对输入和目标张量进行reshape操作以匹配损失函数的输入要求
inputs = torch.reshape(inputs, (1, 1, 1, 3))
targets = torch.reshape(targets, (1, 1, 1, 3))# 实例化 L1 损失函数
loss = nn.L1Loss()
# 计算 L1 损失值
result = loss(inputs, targets)
print(result)# 实例化均方误差(MSE)损失函数
loss_mse = nn.MSELoss()
# 计算均方误差损失值
result2 = loss_mse(inputs, targets)
print(result2)

代码运行结果:

在这里插入图片描述

二、优化器

1.简要介绍

优化器是深度学习中用于更新模型参数以最小化损失函数的算法。在神经网络训练过程中,通过计算损失函数对模型参数的梯度,优化器根据这些梯度来更新模型参数,使得损失函数逐渐减小,从而使模型更好地拟合训练数据。

2.代码

import torch.utils.data
import torchvision.datasets
from torch import nn
import torchvision
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader# 加载 CIFAR-10 数据集
datasets = torchvision.datasets.CIFAR10("./dataset1", train=False, transform=torchvision.transforms.ToTensor(), download=True)# 创建数据加载器
dataloader = DataLoader(datasets, batch_size=1)# 定义神经网络模型 Guodong
class Guodong(nn.Module):def __init__(self):super(Guodong, self).__init__()self.module1 = Sequential(Conv2d(3, 32, 5, padding=2),  # 输入通道数为3,输出通道数为32,卷积核大小为5,填充为2MaxPool2d(2),  # 最大池化层,核大小为2Conv2d(32, 32, 5, padding=2),  # 输入通道数为32,输出通道数为32,卷积核大小为5,填充为2MaxPool2d(2),  # 最大池化层,核大小为2Conv2d(32, 64, 5, padding=2),  # 输入通道数为32,输出通道数为64,卷积核大小为5,填充为2MaxPool2d(2),  # 最大池化层,核大小为2Flatten(),  # 将多维输入展平为一维Linear(1024, 64),  # 全连接层,输入维度为1024,输出维度为64Linear(64, 10)  # 全连接层,输入维度为64,输出维度为10)def forward(self, input):output = self.module1(input)return output# 实例化 Guodong 模型
guodong = Guodong()# 定义交叉熵损失函数
loss = nn.CrossEntropyLoss()
optim = torch.optim.SGD(guodong.parameters(), lr=0.01)
for epoch in range(20):loss_sum = 0.0# 遍历数据加载器中的数据for data in dataloader:imgs, target = data# 将图片输入模型得到预测输出outputs = guodong(imgs)# 计算交叉熵损失值result_loss = loss(outputs, target)optim.zero_grad()# 反向传播计算梯度result_loss.backward()optim.step()loss_sum += result_lossprint(loss_sum)


optim.zero_grad()
result_loss.backward()
optim.step()
这三处设置断点,调试,可以看到grad一开始是None,后来有了具体的数值

在这里插入图片描述
在这里插入图片描述
代码打印结果为:

在这里插入图片描述
(后面还没打印出来,程序运行有点慢QAQ)

可以看到最开始的时候loss_sum在变小,后来又变大。

在深度学习训练过程中,损失函数的值不一定是单调递减的,特别是在使用随机梯度下降(SGD)等基于随机采样的优化算法时。因此,损失函数值的变化可能会出现波动或不规则的情况。

sum_loss 的数值一开始是在减小的,但后来又增大了。这可能是由多种原因引起的,例如:

(1)训练数据的顺序:在每个 epoch 中,数据加载器可能以不同的顺序提供训练样本,这会导致模型参数的更新方向有所不同,从而影响损失函数的变化。

(2)学习率的设置:学习率控制着参数更新的步长大小,如果学习率设置得过大,可能会导致参数更新过程不稳定,损失函数值出现震荡或上升。

(3)模型复杂度和数据集的匹配程度:如果模型的复杂度过高,而训练数据集较小或难以拟合,模型可能会出现过拟合现象,导致损失函数值增大。

这篇关于b站小土堆pytorch学习记录—— P23-P24 损失函数、反向传播和优化器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/786489

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更