XGB-18:使用Concrete ML进行隐私保护推理

2024-03-08 03:04

本文主要是介绍XGB-18:使用Concrete ML进行隐私保护推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

隐私保护推理是指以一种保护输入数据隐私的方式执行机器学习推理。这在处理敏感或个人信息时尤为重要,例如医疗记录或财务信息。实现隐私保护推理的一种方法是使用称为安全多方计算(SMC)的技术,该技术允许多个方在他们的输入上联合计算一个函数,而无需将这些输入透露给彼此。
Concrete ML是由Zama开发的一个专业库,它允许通过完全同态加密(FHE)在加密数据上执行机器学习模型,从而保护数据隐私。
要使用诸如XGBClassifier之类的模型,请使用以下导入方式:

from concrete.ml.sklearn import XGBClassifier

执行隐私保护推理

XGBClassifier的初始化可以按照以下方式进行:

classifier = XGBClassifier(n_bits=6, [other_hyperparameters])

其中 n_bits 决定了输入特征的精度。请注意,n_bits 的值越高,输入特征的精度和最终模型的准确性可能会提高,但也会导致更长的FHE执行时间。
xgboost库中存在的其他超参数也可以使用。

模型训练和编译

与scikit-learn中的模型类似,可以使用 .fit() 方法进行训练

classifier.fit(X_train, y_train)

训练完成后,可以使用校准数据集对模型进行编译,这个数据集可能是训练数据的一个子集:

classifier.compile(X_calibrate)

在这个校准数据集 X_calibrate 用于Concrete ML计算模型中每个中间值的精度(位数宽度)。这是优化等效FHE电路的必要步骤。

FHE模拟与执行

为了验证加密计算中的模型准确性,可以运行一个FHE模拟:

predictions = classifier.predict(X_test, fhe="simulate")

这个模拟可以用来评估模型。此模拟步骤得出的准确性代表了实际FHE执行的准确性,而不必支付实际FHE执行的成本。
当模型准备好后,可以进行实际的完全同态加密执行:

predictions = classifier.predict(X_test, fhe="execute")

请注意,使用 FHE=“execute” 是评估 FHE 中模型的一种方便方式,但对于实际部署,必须使用加密(在客户端)、在 FHE 中运行(在服务器端)和最后解密(在客户端)的函数,以实现端到端的隐私保护推理。
Concrete ML 提供了一个部署 API 以简化这个过程,确保端到端的隐私。
要进一步了解部署 API,可以阅读:

  • 部署文档
  • 部署notebook

Concrete ML中的参数调整

Concrete ML与标准的scikit-learn管道兼容,如GridSearchCV或其他任何超参数调整技术。

示例和演示

  • 情感分析(基于transformers + xgboost)
  • XGBoost分类器
  • XGBoost回归器

结论

Concrete ML提供了一个框架,通过利用完全同态加密来执行隐私保护推理,允许在加密数据上进行安全和私密的计算。
更多信息和示例可以在Concrete ML文档中找到。

参考

  • https://docs.zama.ai/concrete-ml

  • https://xgboost.readthedocs.io/en/latest/tutorials/privacy_preserving.html

  • https://www.youtube.com/watch?v=FFox2S4uqEo

这篇关于XGB-18:使用Concrete ML进行隐私保护推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785771

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca