XGB-18:使用Concrete ML进行隐私保护推理

2024-03-08 03:04

本文主要是介绍XGB-18:使用Concrete ML进行隐私保护推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

隐私保护推理是指以一种保护输入数据隐私的方式执行机器学习推理。这在处理敏感或个人信息时尤为重要,例如医疗记录或财务信息。实现隐私保护推理的一种方法是使用称为安全多方计算(SMC)的技术,该技术允许多个方在他们的输入上联合计算一个函数,而无需将这些输入透露给彼此。
Concrete ML是由Zama开发的一个专业库,它允许通过完全同态加密(FHE)在加密数据上执行机器学习模型,从而保护数据隐私。
要使用诸如XGBClassifier之类的模型,请使用以下导入方式:

from concrete.ml.sklearn import XGBClassifier

执行隐私保护推理

XGBClassifier的初始化可以按照以下方式进行:

classifier = XGBClassifier(n_bits=6, [other_hyperparameters])

其中 n_bits 决定了输入特征的精度。请注意,n_bits 的值越高,输入特征的精度和最终模型的准确性可能会提高,但也会导致更长的FHE执行时间。
xgboost库中存在的其他超参数也可以使用。

模型训练和编译

与scikit-learn中的模型类似,可以使用 .fit() 方法进行训练

classifier.fit(X_train, y_train)

训练完成后,可以使用校准数据集对模型进行编译,这个数据集可能是训练数据的一个子集:

classifier.compile(X_calibrate)

在这个校准数据集 X_calibrate 用于Concrete ML计算模型中每个中间值的精度(位数宽度)。这是优化等效FHE电路的必要步骤。

FHE模拟与执行

为了验证加密计算中的模型准确性,可以运行一个FHE模拟:

predictions = classifier.predict(X_test, fhe="simulate")

这个模拟可以用来评估模型。此模拟步骤得出的准确性代表了实际FHE执行的准确性,而不必支付实际FHE执行的成本。
当模型准备好后,可以进行实际的完全同态加密执行:

predictions = classifier.predict(X_test, fhe="execute")

请注意,使用 FHE=“execute” 是评估 FHE 中模型的一种方便方式,但对于实际部署,必须使用加密(在客户端)、在 FHE 中运行(在服务器端)和最后解密(在客户端)的函数,以实现端到端的隐私保护推理。
Concrete ML 提供了一个部署 API 以简化这个过程,确保端到端的隐私。
要进一步了解部署 API,可以阅读:

  • 部署文档
  • 部署notebook

Concrete ML中的参数调整

Concrete ML与标准的scikit-learn管道兼容,如GridSearchCV或其他任何超参数调整技术。

示例和演示

  • 情感分析(基于transformers + xgboost)
  • XGBoost分类器
  • XGBoost回归器

结论

Concrete ML提供了一个框架,通过利用完全同态加密来执行隐私保护推理,允许在加密数据上进行安全和私密的计算。
更多信息和示例可以在Concrete ML文档中找到。

参考

  • https://docs.zama.ai/concrete-ml

  • https://xgboost.readthedocs.io/en/latest/tutorials/privacy_preserving.html

  • https://www.youtube.com/watch?v=FFox2S4uqEo

这篇关于XGB-18:使用Concrete ML进行隐私保护推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785771

相关文章

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

flask库中sessions.py的使用小结

《flask库中sessions.py的使用小结》在Flask中Session是一种用于在不同请求之间存储用户数据的机制,Session默认是基于客户端Cookie的,但数据会经过加密签名,防止篡改,... 目录1. Flask Session 的基本使用(1) 启用 Session(2) 存储和读取 Se

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测