基于YOLOv5的驾驶员疲劳驾驶行为​​​​​​​检测系统

2024-03-08 03:04

本文主要是介绍基于YOLOv5的驾驶员疲劳驾驶行为​​​​​​​检测系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 💡💡💡本文主要内容:详细介绍了疲劳驾驶行为检测整个过程,从数据集到训练模型到结果可视化分析。

                                                             博主简介

AI小怪兽,YOLO骨灰级玩家,1)YOLOv5、v7、v8优化创新,轻松涨点和模型轻量化;2)目标检测、语义分割、OCR、分类等技术孵化,赋能智能制造,工业项目落地经验丰富;

原创自研系列, 2024年计算机视觉顶会创新点

《YOLOv8原创自研》

《YOLOv5原创自研》

《YOLOv7原创自研》

23年最火系列,内涵80+优化改进篇,涨点小能手,助力科研,好评率极高

《YOLOv8魔术师》

 《YOLOv7魔术师》

《YOLOv5/YOLOv7魔术师》

《RT-DETR魔术师》

应用系列篇:

《YOLO小目标检测》

《深度学习工业缺陷检测》

《YOLOv8-Pose关键点检测》

1.疲劳驾驶行为

每一年,中国都因交通事故而造成数万人的死亡,造成了严重的损失。而其中司机疲劳驾驶,是导致事故发生的重要原因之一。但是当司机们陷入疲劳驾驶状态时,往往司机本人对此状态并不在意,甚至会陷入睡眠状态!整治疲劳驾驶行为成为了交通运输行业的首要任务。随着信息技术的日新月异,如今,我们有机会使用信息技术,消除疲劳驾驶的隐患。实现了通过驾驶员的眼部、嘴部动作实时推断疲劳状态,使得驾驶员能及时的被本地语音方式提醒,避免疲劳驾驶,同时后台管理人员能接收到司机疲劳报警信息。

1.1数据集介绍

数据集大小2914张,类别['closed_eye','closed_mouth','open_eye','open_mouth']

2.基于YOLOv5的疲劳驾驶行为检测

2.1 修改fatigue.yaml

# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Download command: bash ./data/get_voc.sh
# Train command: python train.py --data voc.yaml
# Dataset should be placed next to yolov5 folder:
#   /parent_folder
#     /VOC
#     /yolov5# train and val datasets (image directory or *.txt file with image paths)
train: ./data/fatigue/train.txt # 16551 images
val: ./data/fatigue/val.txt  # 4952 images# number of classes
nc: 4# class names
names: ['closed_eye','closed_mouth','open_eye','open_mouth']

2.2 修改train.py 

def parse_opt(known=False):"""Parses command-line arguments for YOLOv5 training, validation, and testing."""parser = argparse.ArgumentParser()parser.add_argument("--weights", type=str, default=ROOT / "weights/yolov5s.pt", help="initial weights path")parser.add_argument("--cfg", type=str, default="models/yolov5s.yaml", help="model.yaml path")parser.add_argument("--data", type=str, default=ROOT / "data/fatigue.yaml", help="dataset.yaml path")parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path")parser.add_argument("--epochs", type=int, default=50, help="total training epochs")parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch")parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)")parser.add_argument("--rect", action="store_true", help="rectangular training")parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training")parser.add_argument("--nosave", action="store_true", help="only save final checkpoint")parser.add_argument("--noval", action="store_true", help="only validate final epoch")parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor")parser.add_argument("--noplots", action="store_true", help="save no plot files")parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations")parser.add_argument("--evolve_population", type=str, default=ROOT / "data/hyps", help="location for loading population")

 2.3 结果可视化分析 

YOLOv5s summary: 157 layers, 7020913 parameters, 0 gradients, 15.8 GFLOPsClass     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 25/25 [00:10<00:00,  2.38it/s]all        787       2109       0.97      0.982       0.99      0.611closed_eye        787        566      0.953      0.979      0.988       0.54closed_mouth        787        701      0.986      0.997      0.989      0.622open_eye        787        774      0.955      0.967      0.988      0.545open_mouth        787         68      0.985      0.985      0.995      0.736

confusion_matrix.png文件是一个混淆矩阵的可视化图像,用于展示模型在不同类别上的分类效果。混淆矩阵是一个n×n的矩阵,其中n为分类数目,矩阵的每一行代表一个真实类别,每一列代表一个预测类别,矩阵中的每一个元素表示真实类别为行对应的类别,而预测类别为列对应的类别的样本数。

PR_curve.png

PR曲线中的P代表的是precision(精准率),R代表的是recall(召回率),其代表的是精准率与召回率的关系,一般情况下,将recall设置为横坐标,precision设置为纵坐标。PR曲线下围成的面积即AP,所有类别AP平均值即Map

 预测结果: 

关注下方名片,即可获取源码。  

这篇关于基于YOLOv5的驾驶员疲劳驾驶行为​​​​​​​检测系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785764

相关文章

C++简单日志系统实现代码示例

《C++简单日志系统实现代码示例》日志系统是成熟软件中的一个重要组成部分,其记录软件的使用和运行行为,方便事后进行故障分析、数据统计等,:本文主要介绍C++简单日志系统实现的相关资料,文中通过代码... 目录前言Util.hppLevel.hppLogMsg.hppFormat.hppSink.hppBuf

linux系统中java的cacerts的优先级详解

《linux系统中java的cacerts的优先级详解》文章讲解了Java信任库(cacerts)的优先级与管理方式,指出JDK自带的cacerts默认优先级更高,系统级cacerts需手动同步或显式... 目录Java 默认使用哪个?如何检查当前使用的信任库?简要了解Java的信任库总结了解 Java 信

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

Oracle数据库在windows系统上重启步骤

《Oracle数据库在windows系统上重启步骤》有时候在服务中重启了oracle之后,数据库并不能正常访问,下面:本文主要介绍Oracle数据库在windows系统上重启的相关资料,文中通过代... oracle数据库在Windows上重启的方法我这里是使用oracle自带的sqlplus工具实现的方

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详

更改linux系统的默认Python版本方式

《更改linux系统的默认Python版本方式》通过删除原Python软链接并创建指向python3.6的新链接,可切换系统默认Python版本,需注意版本冲突、环境混乱及维护问题,建议使用pyenv... 目录更改系统的默认python版本软链接软链接的特点创建软链接的命令使用场景注意事项总结更改系统的默