高效加载大文件(pandas+dask)

2024-03-08 01:28
文章标签 加载 高效 pandas dask

本文主要是介绍高效加载大文件(pandas+dask),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、仅用pd加载大文件(iterator、chunksize)

要使用Pandas进行高效加载超大文件,我们通常会利用其内置的分块(chunk)处理功能。不过,请注意,Pandas本身并不支持多线程读取文件;它更倾向于单线程中进行块处理。尽管如此,对于优化加载超大文本文件这一场景,可以通过以下方式实现提速:

  1. 预先知道或估计每个数据块的行数或大小。
  2. 利用pandas.read_csv等方法的chunksize参数来迭代读取数据。
  3. 使用多进程而非多线程来并行处理每一块数据(如果确实需要并发执行),因为Python中GIL(全局解释器锁)限制了同一时刻只能有一个线程执行Python字节码。

下面是一个示例代码。请注意,在此示例中没有直接采用多进程来读取文件分片。相反,我们首先以流式模式逐步载入小数据块,并在必要时可应用某种形式的并行处理框架(如Dask)针对这些已经被逐步载入内存中DataFrame对象进行后续操作。

import pandas as pd
class EfficientTextLoader:"""采用pandas高效加载超大文本文件"""def __init__(self, filepath, chunksize=10000):"""初始化:param filepath: 文件路径:param chunksize: 每次迭代加载的行数,默认设定为10000条记录/行注意:根据你系统和硬件配置调整chunksize大小以获得最佳性能。较小值减少内存消耗但增加I/O频率;较大值则反之。"""self.filepath = filepath# Pandas 从版本0.24 开始支持 TextFileReader 属性 'chunksize'.# 当使用 read_csv 等函数与 'iterator=True' 结合时,# 设置 'chunksize' 可返回 TextFileReader 对象供迭代.self.chunk_size = chunksizedef load(self):"""按照指定chunks逐渐地、有效地装载整个文档"""reader = pd.read_csv(self.filepath,sep='\t',  # 假设是制表符分隔的TXT 文档;根据需求而定 iterator=True,header=None,chunksize=self.chunk_size)  # 逐行加载chunks = []try:while True:chunks.append(next(reader))  ## 这里可以添加额外代码对当前Chunk进行预处理或转换 ##except StopIteration:  print("Iteration is stopped.")data_concatenated=pd.concat(chunks,axis=0)   return data_concatenated

上述代码做出了几点修改与优化:

  • 1. 使用 pd.read_csv() 的 iterator=True 和 chunkSize= 参数创建一个可循环遍历所有区段(chunk) 的阅读器 (reader),从而允许手动控制流水线(pipeline) 中各部分内容何时被具体导入到RAM之中。

  • 2. 利用 Python 的异常控制结构完成对全部区段(chunk) 数据依次导入直至结束——当无更多内容可供导出(StopIteration)时跳出循环,并将所有已经在列表(chunks) 中累积起来单元结果合成(concatenate)为最终 DataFrame 对象给予输出。

备注: 而关于真正意义上“利用Panda和* 多线性 *” —— 实际情况复杂许多且易受 Python GIL 影响;通常建议替代方案比如 Dask 来达成类似需求。

普通的pandas加载多个文件,pandas加载文件不支持通配符,因此需要glob包来辅助

import pandas as pd
import glob
# 获取所有匹配路径下CSV格式文档列表 
files = glob.glob('path/to/your/files/data_*.csv')
# 循环遍历每个文档, 读取后添加至列表中 
dfs = [pd.read_csv(file) for file in files]
# 将这些 DataFrame 合并成一个 DataFrame (注意: 确保各DataFrame结构相同)
df_combined = pd.concat(dfs)

pandas 在加载3个2G大小文件时,耗时约为 80s

​​​​​​​

二、Dask + pd 加载处理大文件

使用Dask优化原有基于Pandas的代码以提高处理超大文件的能力是一个很好的选择。Dask是Python中一个流行且强大的并行计算库,它可以无缝扩展Numpy、Pandas等数据处理操作到分布式计算环境中。

下面展示如何用Dask重新实现之前讨论过加载超大文本文件功能:

import dask.dataframe as ddclass DaskTextLoader:def __init__(self, filepath, blocksize=1024 * 1024 * 128): # 默认块大小为128MB"""使用 Dask 初始化加载器。:param filepath: 要读取的文件路径。:param blocksize: 单个块(block)读入内存时占用字节大小,默认值设定为128MB。根据你系统和硬件配置调整blocksize大小以获得最佳性能,较小值将导致更多、但管理起来较易控制(内存使用上)单元任务;较大则减少任务数量但每个任务更耗时及可能引发更高内存消耗压力。注意:该参数仅针对文本数据有效,如CSV或JSON格式。如果输入其他格式(比如Parquet)DASK将自动管理最佳块划分策略而忽略此设置项。"""self.filepath = filepathself.blocksize = blocksizedef load(self):# 加载txt/csv/json... 文件并返回dask DataFrame对象.df = dd.read_csv(self.filepath, blocksize=self.blocksize)## 这里可以添加任何必要预处理步骤 ##return df

这段代码通过dd.read_csv()函数来读取文本类型数据,并允许通过blocksize参数来控制加载到内存中每个块(chunk) 的大小。这对于处理非常庞大的文件特别有用因为它允许在不完全加载整个文件到RAM情况下进行分片并行操作。

一旦得到了Dask DataFrame 对象 (df) 后即可利用类似 Pandas 的API进行各种复杂操作与运算—例如过滤(filtering), 分组(grouping), 汇总(aggregating), 转换(transformations)—只需记住结果通常也呈现异步形态;故而在需要具体结果前须调用.compute()方法触发真正执行所有累积待办事务序列链条:

result_df = df.compute()   # 触发实际执行获取Pandas DataFrame结果对象result_df = df.head(5)      # 触发实际执行获取Pandas DataFrame结果对象,只获取5条

请注意,尽管 .compute() 返回标准 Pandas DataFrame 对象包括其所含全部数据项——针对极端庞大规模集合可能会再度碰撞 内存在限制问题; 因此,在设计解决方案结构时应当谨慎试图一次性完全求解而考虑是否逐部递进或者仍然保持部分工作流程在 DASK 执行框架上面智能地选段完成具体细则需求点。

三、自定义单机/多机多线程 dask + pd 加载预处理大文件

要在单机环境中对Dask进行多进程数的控制,你可以使用dask.distributed模块创建一个本地集群,并控制其工作进程数量。通过这种方式,你能够显式地设定并发执行任务的工作线程或进程数目。

以下是如何修改上述代码来加入单机多进程控制的示例:

from dask.distributed import Client, LocalCluster
import dask.dataframe as ddclass DaskTextLoaderWithMultiprocessing:def __init__(self, filepath, blocksize=1024 * 1024 * 128, n_workers=4):"""使用 Dask 初始化加载器并设置多处理。:param filepath: 要读取的文件路径。:param blocksize: 单个块(block)读入内存时占用字节大小,默认值设定为128MB。根据系统和硬件配置调整blocksize大小以获得最佳性能,较小值将导致更高I/O频率但容易管理(内存使用上);较大则减少任务数量但每个任务更耗时及可能引发更高内存消耗压力。注意:该参数仅针对文本数据有效,如CSV或JSON格式。如果输入其他格式(比如Parquet)DASK将自动管理最佳块划分策略而忽略此设置项。:param n_workers: 并行工作线程/进程数,默认为4.增加此数字可并行执行更多操作,但也会增加系统资源消耗。"""self.filepath = filepathself.blocksize = blocksize# 创建本地DASK集群  cluster = LocalCluster(n_workers=n_workers)self.client = Client(cluster)def load(self):# 加载txt/csv/json... 文件并返回dask DataFrame对象.df = dd.read_csv(self.filepath, header=None,    # 是否使用头sep='\t', # csv 分隔符blocksize=self.blocksize)## 这里可以添加任何必要预处理步骤 ##return df def close_cluster(self):# 关闭client和cluster self.client.close()

在这段代码中,我们首先创建了一个LocalCluster实例,并通过参数n_workers=n_worksers,指明了我们想要在集群中启用的工作者(Worker)数量即实际运行计算操作所使用到核心/线程序列总量。紧接着利用该cluster构造出 a Client, 其扮演着用户与集群之间交互接口角色方便提交相关计算任务请求等功能使命完结后续各类数据操作需求点。

请注意,在完成所有需要做的计算之后调用.close()方法关闭客户端(Clients)与服务端(Cluster),释放相关资源非常重要;特别情况下如果忘记手动关闭可能会导致程序未正常结束情形下挂起保持运行状态占据宝贵资源直至外部干预才得以解决问题。

举个完整的例子来执行该代码

首先,假设已经有了一个CSV文件example.csv,该文件内容大致如下:

name,age,city

Alice,34,Berlin

Bob,23,London

Charlie,45,New York

现在目标是使用上面定义的Dask处理类来读取这个CSV文件,并计算年龄列(age)的平均值。 
代码示例如下:

# 使用定义好的加载器来读取数据,然后多线程处理数据。
loader = DaskTextLoaderWithMultiprocessing('example.csv', n_workers=2)   ## 假设您希望用2个工作进程运行df_dask = loader.load()  ## 调用load方法得到dask DataFrame对象 average_age_computed_future=df_dask.age.mean()   ## 计算年龄平均值操作 (延迟执行) average_age_result=average_age_computed_future.compute()  ### 触发实际执行并获取结果(阻塞直到完成)
print(f"The average age is: {average_age_result}")loader.close_cluster() ### 记住关闭集群释放资源!

以上代码段展示了从头至尾创建一个可以控制单机多进程数 的 DASK Text Loader, 然后利用它去异步地读取一个CSV格式文本数据、计算某特定数值列(此处为“age”年龄字段)内所有元素平均值,并最终输出该统计结果。

 使用 dask 加载多个文件

使用 Dask 加载多个文件假设你有一系列以相同模式命名(例如data_*.csv)的CSV文件想要加载:import dask.dataframe as dd# 用通配符 '*' 加载匹配到的所有 CSV 文件
df = dd.read_csv('path/to/your/files/data_*.csv')

下面是dask + pd 加载3个2g的文件,耗时约37s,n_workers指定越多,文件大小和文件数量越大,差距拉的就越大 

这篇关于高效加载大文件(pandas+dask)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785497

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

从入门到精通详解LangChain加载HTML内容的全攻略

《从入门到精通详解LangChain加载HTML内容的全攻略》这篇文章主要为大家详细介绍了如何用LangChain优雅地处理HTML内容,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录引言:当大语言模型遇见html一、HTML加载器为什么需要专门的HTML加载器核心加载器对比表二

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class