基于OpenCV的图形分析辨认05(补充)

2024-03-07 16:28

本文主要是介绍基于OpenCV的图形分析辨认05(补充),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、前言

二、实验内容

三、实验过程


一、前言

编程语言:Python,编程软件:vscode或pycharm,必备的第三方库:OpenCV,numpy,matplotlib,os等等。

关于OpenCV,numpy,matplotlib,os等第三方库的下载方式如下:

第一步,按住【Windows】和【R】调出运行界面,输入【cmd】,回车打开命令行。

第二步,输入以下安装命令(可以先升级一下pip指令)。

pip升级指令:

python -m pip install --upgrade pip

 opencv库的清华源下载:

pip install opencv-python  -i https://pypi.tuna.tsinghua.edu.cn/simple

numpy库的清华源下载:

 pip install numpy  -i https://pypi.tuna.tsinghua.edu.cn/simple

matplotlib库的清华源下载:

pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

os库的清华源下载:

pip install os  -i https://pypi.tuna.tsinghua.edu.cn/simple 

二、实验内容

对提取出来的人脸特征数据集进行分类,使用MATLAB软件构建SVM支持向量机用于分类。

三、实验过程

以下是提取好的人脸特征数据集,分别用LBP和LDP在全局和局部情况下提取出来的。每一种提取方法下都是训练集和测试集。

特征数据集格式如下,其他一致:

 使用SVM检验识别的准确率(MATLAB软件):

导入训练数据和测试数据,分别将其归一化处理,创建SVM模型,并结合网格搜索法对训练数据进行训练,模型训练好以后,用于分类测试数据,并得到结果。MATLAB代码如下:

%% I. 清空环境变量
clc;clear ;close all%% II. 导入数据
% 选择需要的训练文件和测试文件
% data_train = importdata('D:\Image\GC_LBP_train.txt');
% data_test = importdata('D:\Image\GC_LBP_test.txt');
% data_train = importdata('D:\Image\GC_LDP_train.txt');
% data_test = importdata('D:\Image\GC_LDP_test.txt');
% data_train = importdata('D:\Image\LC_LBP_train.txt');
% data_test = importdata('D:\Image\LC_LBP_test.txt');
% data_train = importdata('D:\Image\LC_LBP_train.txt');
% data_test = importdata('D:\Image\LC_LBP_test.txt');
train_data = [];
for i = 1:322data1 = data_train{i, 1};data1_1 = data1(11:end-1);data_num = str2num(data1_1);train_data = [train_data;data_num];
end
AA = repmat(1:46,7);
AA = AA(1:322)';
train_data(:,257) = AA;
%% 读取测试文件
test_data = [];
for i = 1:138data2 = data_test{i, 1};data2_1 = data2(11: end-1);data_num_2 = str2num(data2_1);test_data = [test_data; data_num_2];
end
BB = repmat(1:46,3);
BB = BB(1:138)';
test_data(:,257) = BB;%%
% 训练集
train_matrix = train_data(:,(1:256));%训练集特征
train_label = train_data(:,257);%训练集标签%%
% 测试集
test_matrix = test_data(:,(1:256));%测试集特征
test_label = test_data(:,257);%测试集特征%% III. 数据归一化
[Train_matrix,PS] = mapminmax(train_matrix',0,1);%归一化到-1至1之间
Train_matrix = Train_matrix';
Test_matrix = mapminmax('apply',test_matrix',PS);
Test_matrix = Test_matrix';%% IV. SVM创建/训练(RBF核函数)
%%
% 寻找最佳c/g参数——交叉验证方法
[c,g] = meshgrid(-10:0.2:10,-10:0.2:10);
[m,n] = size(c);
cg = zeros(m,n);
eps = 10^(-4);
v = 5;
bestc = 1;
bestg = 0.1;
bestacc = 0;
%% 
for i = 1:mfor j = 1:ncmd = ['-v ',num2str(v),' -t 2',' -c ',num2str(2^c(i,j)),' -g ',num2str(2^g(i,j))];%Train_matrix矩阵的行列需要转至 -c损失函数、惩罚因子cg(i,j) = svmtrain(train_label,Train_matrix,cmd);     if cg(i,j) > bestaccbestacc = cg(i,j);bestc = 2^c(i,j);bestg = 2^g(i,j);end        if abs( cg(i,j)-bestacc )<=eps && bestc > 2^c(i,j) bestacc = cg(i,j);bestc = 2^c(i,j);bestg = 2^g(i,j);end               end
end
cmd = [' -t 2',' -c ',num2str(bestc),' -g ',num2str(bestg)];%%
% 创建/训练SVM模型
model = svmtrain(train_label,Train_matrix,cmd);%% V. SVM仿真测试
[predict_label_1,accuracy_1,decision_values1] = svmpredict(train_label,Train_matrix,model); 
[predict_label_2,accuracy_2,decision_values2] = svmpredict(test_label,Test_matrix,model); 
result_1 = [train_label predict_label_1];
result_2 = [test_label predict_label_2];%% VI. 绘图
figure
plot(1:length(test_label),test_label,'r-*')
hold on
plot(1:length(test_label),predict_label_2,'b:o')
grid on
legend('真实类别','预测类别')
xlabel('测试集样本编号')
ylabel('测试集样本类别')
string = {'测试集SVM预测结果对比(RBF核函数)';['accuracy = ' num2str(accuracy_2(1)) '%']};
title(string)

在分类结果上,会呈现训练集准确率100%,而测试集的准确率较低,说明SVM模型对训练集的提取效果较好,但用于测试集的效果较差,存在欠拟合情况,可能原因有在处理过程中,交叉验证的参数设置较小,导致模型训练的并不是很好,但较大的交叉验证参数会到模型训练时间过长。所以需要改进寻优方式,可以选择粒子群优化算法或者是遗传优化算法改进模型寻优过程,以寻求用较短的训练时间找到较为优异的分类情况。

都看到最后了,确定不点个赞吗?

这篇关于基于OpenCV的图形分析辨认05(补充)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/784115

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种