021—pandas 书单整理将同一种书整理在一起

2024-03-07 15:28

本文主要是介绍021—pandas 书单整理将同一种书整理在一起,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在办公自动化场景下,最常见的需求就是信息的整理,pandas 最擅长复杂数据逻辑的处理,能够让整理工作更加高效,同时不容易出错。今天的案例是将一个平铺的书单按品类进行整理,合并为一行。

需求:

  • 将书按书名进行合并,比如资本论、大学语文、数据结构 各只保留一个就行
  • 增加 备注 列,用于表示书的册数,有三种情况:
  • 册名为数字的,如资本论,显示 1-3
  • 册名为文字的,如大学语文,显示 上下
  • 没有分册的,如数据结构,显示为空

思路:

既然要按书名分组,同时册名要整理在备注中,那我们就要拆书名和册名,这个可以用字符访问器(.str.xx)来操作。
分组后可以用 agg() 来聚合不同的列。
接下来按书名进行分组,作者和 ISBN 编码同组内相同,随便显示其中一个即可,我们可以用 max。
接下来最复杂的就是备注列了,我们可以写一个备注处理的函数来专门处理。
备注列依赖我们将书单列拆分的册名(为了方便后期处理,我们拆分时可以直接叫备注)。这个处理的逻辑是:

  1. 如果此列全是为空,则显示空字符
  2. 如果此列全为数字:则输出「列最小-列最大值」这样的合成字符
  3. 如果以上都不时,就将他们合并起来,这个可以直接用 Series 的 sum,它实现了字符串的拼接
  • 理清了以上逻辑,接下来我们就开始编写代码。

二、使用步骤

1.引入库

代码如下(示例):

from io import StringIO
import pandas as pd

2.读入数据

代码如下(示例):

data = '''
书单,作者,ISBN
资本论 1,袁某,23445-2342
资本论 2,袁某,23445-2342
资本论 3,袁某,23445-2342
大学语文 上,李四,a25245-32425
大学语文 下,李四,a25245-32425
数据结构,王某,x342w-ssa
'''df = pd.read_csv(StringIO(data))
df

在这里插入图片描述

#给它起列列索引名,赋值为一个新的 DataFrame 备用:
df1 = df.书单.str.split(' ', expand=True)
df1 = df1.set_axis(['书名', '备注'], axis=1)
df1

在这里插入图片描述

#将这个拆分的数据合并到原数据中,方便下一步分组:
new_df = pd.concat([df, df1], axis=1)
new_df

在这里插入图片描述

#接下来,编写我们提到的备注处理聚合函数(它的参数备注列分组后的一个 Series):
def mark(ser: pd.Series):# 判断是否全为空值if ser.isna().all():return ''# 判断是否全为数字elif ser.str.isdecimal().all():return f'{ser.min()}-{ser.max()}' else:return ser.sum()
#分组,聚合并应用以上函数:
(new_df.groupby('书名', as_index=False, sort=False).agg({'作者': max,'ISBN': max,'备注': mark})
)
#在分组时,我们取消了让分组名成为索引,取消了分组的重新排序,保持与原数据相同的顺序。

在这里插入图片描述

总结

以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

这篇关于021—pandas 书单整理将同一种书整理在一起的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/783968

相关文章

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python变量与数据类型全解析(最新整理)

《Python变量与数据类型全解析(最新整理)》文章介绍Python变量作为数据载体,命名需遵循字母数字下划线规则,不可数字开头,大小写敏感,避免关键字,本文给大家介绍Python变量与数据类型全解析... 目录1、变量变量命名规范python数据类型1、基本数据类型数值类型(Number):布尔类型(bo

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

Spring Boot 常用注解整理(最全收藏版)

《SpringBoot常用注解整理(最全收藏版)》本文系统整理了常用的Spring/SpringBoot注解,按照功能分类进行介绍,每个注解都会涵盖其含义、提供来源、应用场景以及代码示例,帮助开发... 目录Spring & Spring Boot 常用注解整理一、Spring Boot 核心注解二、Spr