进程间通信之信号灯 || 网络协议UDP/TCP || 三次握手四次挥手

本文主要是介绍进程间通信之信号灯 || 网络协议UDP/TCP || 三次握手四次挥手,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在线程通信中由于数据段等内存空间的共用性,导致同时访问时资源竞争的问题,在线程中我们使用信号量的申请和释放,在防止资源竞争的产生。在进程间的通信中,有信号灯的概念。搭配共享内存实现进程同步。

有名信号量:
    1.创建
        semget 
        int semget(key_t key, int nsems, int semflg);
        功能:
            创建一组信号量
        参数:
            key:IPC对象名
            nsems:信号量的个数
            semflg:IPC_CREAT 
        返回值:
            成功返回信号量ID
            失败返回-1 

    2.销毁 
        semctl
        int semctl(int semid, int semnum, int cmd, ...);
        功能:   
            向信号灯发送命令
        参数:
            semid:信号灯ID号
            semnum:具体操作信号量的编号
            cmd:
                IPC_RMID    删除信号灯
                SETVAL      设置信号量的值
        返回值:
            成功返回0
            失败返回-1 

        初始化:
        union semun {
            int              val;    /* Value for SETVAL */
            struct semid_ds *buf;    /* Buffer for IPC_STAT, IPC_SET */
            unsigned short  *array;  /* Array for GETALL, SETALL */
            struct seminfo  *__buf;  /* Buffer for IPC_INFO
                                        (Linux-specific) */
        };

    3.申请信号量
    4.释放信号量
        semop 
        int semop(int semid, struct sembuf *sops, size_t nsops);
        功能:
            对信号量完成操作
        参数:
            semid:信号灯的ID号
            sops:信号量操作的数组首地址
            nsops:数组元素个数
        返回值:
            成功返回0 
            失败返回-1 

         unsigned short sem_num;  /* semaphore number */        操作信号量的下标
         short          sem_op;   /* semaphore operation */     具体对信号量的操作(申请:-1  释放:+1)
         short          sem_flg;  /* operation flags */         SEM_UNDO
 


网络编程:

网络:
    数据传输,数据共享

1.网络协议模型:
    OSI协议模型
        应用层              实际发送的数据
        表示层              发送的数据是否加密
        会话层              是否建立会话连接
        传输层              数据传输的方式(数据报、流式)
        网络层              数据的路由(如何从一个局域网到达另一个局域网)        IP地址
        数据链路层          局域网下如何通信
        物理层              物理介质的连接

    TCP/IP协议模型   
        应用层              传输的数据
        传输层              传输的方式
        网络层              数据如何从一台主机到达另一台主机
        网络接口层          物理介质的连接

    应用层:
        HTTP    超文本传输协议
        HTTPS   
        FTP     文件传输协议
        TFTP    简单文本传输协议
        SMTP    邮件传输协议
        MQTT    
        TELNET  
        ..
    
    传输层:
        UDP     用户数据报协议
                特点:
                    1.实现机制简单
                    2.资源开销小
                    3.不安全不可靠

        TCP     传输控制协议
                特点:
                    1.实现机制复杂
                    2.资源开销大
                    3.安全可靠

TCP可靠依赖于:三次握手四次挥手

三次握手:SYN->             <-ACK+SYN

                  ACK->

当客户端想和服务器建立传输的时候,会首先发送信息进行确认,服务器获得信息后,返回接受到信息,为了让服务器也了解到对方就收到,客户端也会发送一条信息最后返回给服务器。

四次挥手:断开连接:首先发送断开请求,SYN->         客端收到信息后,返回ACK并等待数据传输完成。

完成之后发送< - SYN

主机返回 ACK->        四次挥手结束。

关于子网掩码和网络位,主机位

    网络层:
        IPv4

        IP地址:唯一标识网络中一台主机的标号
        IP地址:网络位 + 主机位
        子网掩码:用来标识IP地址的网络位和主机位
                子网掩码是1的部分表示IP地址的网络位
                子网掩码是0的部分表示IP地址的主机位
        网段号:网络位不变,主机位全为0,表示网段号
        广播地址:网络位不变,主机位全为1,表示广播地址

        IP地址类型:
        A类
            1.0.0.0 - 126.255.255.255
            子网掩码:255.0.0.0
            管理超大规模网络
            10.0.0.0 - 10.255.255.255 

        B类
            128.0.0.0 - 191.255.255.255
            子网掩码:255.255.0.0 
            管理大中规模型网络
            172.16.0.0 - 172.31.255.255

        C类
            192.0.0.0 - 223.255.255.255
            子网掩码:255.255.255.0
            管理中小规模型网络 
            192.168.0.0 - 192.168.255.255

        D类
            224.0.0.0 - 239.0.0.0
            用于组播

        E类
            240.0.0.0 - 255.255.255.255 
            用于实验

2.UDP编程
    socket套接字编程:
    1.发端:
        socket 
        int socket(int domain, int type, int protocol);
        功能:
            创建一个用来通信的文件描述符
        参数:
            domain:使用的协议族 AF_INET (IPv4协议族)
            type:套接字类型
                SOCK_STREAM:流式套接字
                SOCK_DGRAM:数据报套接字
                SOCK_RAW:原始套接字
            protocol:协议
                默认为0 
        返回值:
            成功返回文件描述符
            失败返回-1 

        sendto 
        ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                      const struct sockaddr *dest_addr, socklen_t addrlen);
        功能:
            利用套接字向指定地址发送数据信息 
        参数:
            sockfd:套接字文件描述符
            buf:发送数据空间首地址
            len:发送数据的长度
            flags:属性默认为0 
            dest_addr:目的地址信息存放的空间首地址
            addrlen:目的地址的长度
        
        struct sockaddr_in {
            sa_family_t    sin_family; /* address family: AF_INET */
            in_port_t      sin_port;   /* port in network byte order */
            struct in_addr sin_addr;   /* internet address */
        };

        /* Internet address. */
        struct in_addr {
            uint32_t       s_addr;     /* address in network byte order */
        };
                  
        返回值:
            成功返回实际发送字节数
            失败返回-1 

        inet_addr:
        in_addr_t inet_addr(const char *cp);
        功能:  
            将字符串IP地址转换为内存中的IP地址 

        htons
        uint16_t htons(uint16_t hostshort);
        功能:
            将本地字节序转换为网络的大端字节序
        
        close 

这篇关于进程间通信之信号灯 || 网络协议UDP/TCP || 三次握手四次挥手的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/783336

相关文章

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

Windows的CMD窗口如何查看并杀死nginx进程

《Windows的CMD窗口如何查看并杀死nginx进程》:本文主要介绍Windows的CMD窗口如何查看并杀死nginx进程问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows的CMD窗口查看并杀死nginx进程开启nginx查看nginx进程停止nginx服务

Java进程CPU使用率过高排查步骤详细讲解

《Java进程CPU使用率过高排查步骤详细讲解》:本文主要介绍Java进程CPU使用率过高排查的相关资料,针对Java进程CPU使用率高的问题,我们可以遵循以下步骤进行排查和优化,文中通过代码介绍... 目录前言一、初步定位问题1.1 确认进程状态1.2 确定Java进程ID1.3 快速生成线程堆栈二、分析

Python多进程、多线程、协程典型示例解析(最新推荐)

《Python多进程、多线程、协程典型示例解析(最新推荐)》:本文主要介绍Python多进程、多线程、协程典型示例解析(最新推荐),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 目录一、multiprocessing(多进程)1. 模块简介2. 案例详解:并行计算平方和3. 实现逻

C#通过进程调用外部应用的实现示例

《C#通过进程调用外部应用的实现示例》本文主要介绍了C#通过进程调用外部应用的实现示例,以WINFORM应用程序为例,在C#应用程序中调用PYTHON程序,具有一定的参考价值,感兴趣的可以了解一下... 目录窗口程序类进程信息类 系统设置类 以WINFORM应用程序为例,在C#应用程序中调用python程序