Apache Paimon 使用之Creating Catalogs

2024-03-07 08:04

本文主要是介绍Apache Paimon 使用之Creating Catalogs,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Paimon Catalog 目前支持两种类型的metastores:

filesystem metastore (default),在文件系统中存储元数据和表文件。
hive metastore,将metadata存储在Hive metastore中。用户可以直接从Hive访问表。

1.使用 Filesystem Metastore 创建 Catalog

Flink引擎

Flink SQL注册并使用名为my_catalog的Paimon catalog,元数据和表文件存储在hdfs:///path/to/warehouse下。

CREATE CATALOG my_catalog WITH ('type' = 'paimon','warehouse' = 'hdfs:///path/to/warehouse'
);USE CATALOG my_catalog;

在 Catalog 中创建的 tables,可以使用前缀table-default.定义任何默认表选项。

Spark3引擎

通过 shell 命令注册一个名为paimon的paimon catalog,元数据和表文件存储在hdfs:///path/to/warehouse下。

spark-sql ... \--conf spark.sql.catalog.paimon=org.apache.paimon.spark.SparkCatalog \--conf spark.sql.catalog.paimon.warehouse=hdfs:///path/to/warehouse

对于 catalog 中创建的 tables,可以使用前缀spark.sql.catalog.paimon.table-default.定义默认表选项。

spark-sql启动后,使用以下SQL切换到paimon目录的default数据库。

USE paimon.default;
2.使用 Hive Metastore 创建 Catalog

使用Paimon Hive catalog,对 catalog 的更改将直接影响相应的Hive metastore,在此类 catalog 中创建的表可以直接从 Hive 访问。

要使用Hive catalog,数据库名称、表名和字段名均应小写

Flink 引擎

Flink 中的Paimon Hive catalog依赖于Flink Hive connector bundled jar,首先要下载Hive connector bundled jar,并将其添加到classpath。

以下Flink SQL注册并使用名为my_hive的Paimon Hive catalog,元数据和表文件存储在hdfs:///path/to/warehouse下,元数据也存储在Hive metastore中。

如果Hive需要security authentication,如Kerberos、LDAP、Ranger,或者希望paimon表由Apache Atlas管理(在hive-site.xml中设置"hive.metastore.event.listeners"),可以在hive-site.xml文件路径中指定hive-conf-dir和hadoop-conf-dir参数。

CREATE CATALOG my_hive WITH ('type' = 'paimon','metastore' = 'hive',-- 'uri' = 'thrift://<hive-metastore-host-name>:<port>', default use 'hive.metastore.uris' in HiveConf-- 'hive-conf-dir' = '...', this is recommended in the kerberos environment-- 'hadoop-conf-dir' = '...', this is recommended in the kerberos environment-- 'warehouse' = 'hdfs:///path/to/warehouse', default use 'hive.metastore.warehouse.dir' in HiveConf
);USE CATALOG my_hive;

对于在 catalog 中创建的表,可以使用前缀table-default.定义默认表选项。

此外,还可以创建Flink Generic Catalog。

Spark3引擎

Spark需要包含Hive dependencies。

以下shell命令注册一个名为paimon的Paimon Hive Catalog,元数据和表文件存储在hdfs:///path/to/warehouse下,此外,元数据也存储在Hive metastore中。

spark-sql ... \--conf spark.sql.catalog.paimon=org.apache.paimon.spark.SparkCatalog \--conf spark.sql.catalog.paimon.warehouse=hdfs:///path/to/warehouse \--conf spark.sql.catalog.paimon.metastore=hive \--conf spark.sql.catalog.paimon.uri=thrift://<hive-metastore-host-name>:<port>

对于 Catalog 中创建的表,可以使用前缀spark.sql.catalog.paimon.table-default.定义默认表选项。

spark-sql启动后,可以使用以下SQL切换到paimon catalog的default数据库。

USE paimon.default;

此外,还可以创建Spark Generic Catalog。

当使用Hive Catalog通过alter table更改不兼容的列类型时,需要配置hive.metastore.disallow.incompatible.col.type.changes=false

如果使用的是Hive3,请禁用Hive ACID:

hive.strict.managed.tables=false
hive.create.as.insert.only=false
metastore.create.as.acid=false
3.在Properties中设置Location

如果使用的是对象存储,并且不希望paimon表/数据库的location被hive的文件系统访问,这可能会导致诸如“No filesystem for scheme:s3a”之类的错误,可以通过在属性中配置location来设置表/数据库的location-in-properties。

4.同步Partitions到Hive Metastore

默认,Paimon不会将新创建的分区同步到Hive metastore中,用户将在Hive中看到一个未分区的表,Partition push-down将改为通过filter push-down进行。

如果想在Hive中查看分区表,并将新创建的分区同步到Hive metastore中,请将表属性metastore.partitioned-table设置为true。

5.添加参数到Hive Table

使用table option有助于方便地定义Hive表参数,以hive.前缀的参数将在Hive表的TBLPROPERTIES中自动定义。例如,使用hive.table.owner=Jon将在创建过程中自动将表参数table.owner=Jon添加到表属性中。

6.CatalogOptions
KeyDefaultTypeDescription
fs.allow-hadoop-fallbacktrueBooleanAllow to fallback to hadoop File IO when no file io found for the scheme.
lineage-meta(none)StringThe lineage meta to store table and data lineage information. Possible values: “jdbc”: Use standard jdbc to store table and data lineage information.“custom”: You can implement LineageMetaFactory and LineageMeta to store lineage information in customized storage.
lock-acquire-timeout8 minDurationThe maximum time to wait for acquiring the lock.
lock-check-max-sleep8 sDurationThe maximum sleep time when retrying to check the lock.
lock.enabledfalseBooleanEnable Catalog Lock.
metastore“filesystem”StringMetastore of paimon catalog, supports filesystem and hive.
table.typemanagedEnumType of table. Possible values:“managed”: Paimon owned table where the entire lifecycle of the table data is managed.“external”: The table where Paimon has loose coupling with the data stored in external locations.
uri(none)StringUri of metastore server.
warehouse(none)StringThe warehouse root path of catalog.

FilesystemCatalogOptions

KeyDefaultTypeDescription
case-sensitivetrueBooleanIs case sensitive. If case insensitive, you need to set this option to false, and the table name and fields be converted to lowercase.

HiveCatalogOptions

KeyDefaultTypeDescription
hadoop-conf-dir(none)StringFile directory of the core-site.xml、hdfs-site.xml、yarn-site.xml、mapred-site.xml. Currently, only local file system paths are supported. If not configured, try to load from ‘HADOOP_CONF_DIR’ or ‘HADOOP_HOME’ system environment. Configure Priority: 1.from ‘hadoop-conf-dir’ 2.from HADOOP_CONF_DIR 3.from HADOOP_HOME/conf 4.HADOOP_HOME/etc/hadoop.
hive-conf-dir(none)StringFile directory of the hive-site.xml , used to create HiveMetastoreClient and security authentication, such as Kerberos, LDAP, Ranger and so on. If not configured, try to load from ‘HIVE_CONF_DIR’ env.
location-in-propertiesfalseBooleanSetting the location in properties of hive table/database. If you don’t want to access the location by the filesystem of hive when using a object storage such as s3,oss you can set this option to true.

FlinkCatalogOptions

KeyDefaultTypeDescription
default-database“default”String
disable-create-table-in-default-dbfalseBooleanIf true, creating table in default database is not allowed. Default is false.

这篇关于Apache Paimon 使用之Creating Catalogs的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782866

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1