新版白话空间统计(5):莫兰指数之计算详解

2024-03-07 05:10

本文主要是介绍新版白话空间统计(5):莫兰指数之计算详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CSDN的被爬虫专用声明:虾神原创,公众号\知乎:虾神说D

转发、转载和爬虫,请主动保留此声明。

上次我们简单的介绍了一下学渣莫兰同学的逆袭之旅,梦想成为一个数学家的他最后阴差阳错的成为了一个统计学家,所以虾神不禁陷入沉思:

好了,不说数学了,我们今天继续来说莫兰指数。

我们先来看看莫兰指数的原理。

先看看下面这样一个属性数据的相关分析图,假设这是四个城市的房价数据——

当北京连续三个月上升的时候,石家庄也连续三个月上升,这样我们就可以认为(在本次分析中)北京和石家庄的房价是正相关的,所以我们记为1。

同样,北京上升的同时,太原连续三个月下降,就认为是负相关,记为-1。

北京上升,但是天津有升有降,那么这样就可以他们之间是不相关,记为0

类推,西安,正相关,记为1。

属性相关性的分析非常容易,那么到了空间自相关应该怎么办呢?虽然莫兰提出莫兰指数的时候,所谓的地理学第一定律还没有被发布(1950年,托布勒还在读大学,莫兰同学已经是牛津大学的讲师了),但是莫兰在随机概率的研究中发觉,空间分布对动物种群研究的重要性,所以开创性的在相关性研究中,加入了空间相邻的参数,如果加入空间关系,就会得到这样一个空间权重关系:

之后,四个城市之间的空间权重矩阵就应该是:

那么,最简单的对二者之间,做一个乘法,就得到这样一个值(与北京的空间自相关):

可以看见,空间关系就两种:相关 or 不相关,属性有三种:正、负、无,所以乘积就得到三种情况:

这就是莫兰指数的原理:属性与空间关系的乘积,得到最终的空间上的相关性。空间关系在自相关分析里面,起到的作用就是判定是否有关系,空间上不相关,那么属性再相关也没有用。

在这个例子里面,北京被认为与太原有临近关系,而他们的属性又正好是负相关,所以空间加权之后,就认为是空间负相关,再按照空间分布模式的规则,两个蹲在一起的,属性不相似,那就是所谓的离散关系。

而北京与石家庄在空间上也有临近关系,而且属性相似,为正相关,所以加权之后被计算为空间自相关,在自己身边有相似的伙伴,就是所谓的聚集模式。

下面我们来看看那莫兰当年给莫兰指数定义的计算公式:

好吧好吧,数学公式就不写了,有兴趣的同学见(以后可能会有的)黑话空间统计学算法篇里面的内容。我只是简单说说莫兰指数如何进行计算的基础过程:

第一件事就是计算出所有要素之间的空间关系,形成空间关系矩阵,不过用矩阵来进行存储的话,有足足50%+的浪费,所以所有的计算莫兰指数的软件,都用的稀疏矩阵来进行记录的,比如上面那个矩阵,记录的方式就是:


北京:天津、石家庄、太原

天津:北京、石家庄、太原

石家庄:北京、天津,太原

太原:北京、天津、石家庄

西安:(空)


然后以此对有关系的城市之间进行计算,因为莫兰指数计算的是截面数据,所以不可能会出现多个时间片段的数据,单个数值之间,怎么进行相关性对比呢?答案就是用属性值与平均数之间的差(离差)来进行判定。

总所周知,离差是衡量数据分布离散程度的一种非常有效的指标,所以莫兰在这里用每个要素与相邻要素的离差乘积,然后乘以空间关系系数,作为分子,然后用所有数据的离差平方和作为分母,计算出所有数据之间的离散程度来,接下去用总的要素数量除以所有空间关系权重的和,来作为总体系数权重,把二者相乘,就得到了结果,用公式表达就是:

好吧,我食言了……

从这个公式可以看出,每个要素会和与自身有空间临近关系的要素进行计算——没有临近关系,比如上面示例里面的西安,空间相关系数为0,结果自然都是0了。

从这个数学公式上面看来,莫兰同学当年的设计非常的精巧,虾神这种数学学渣到现在读到这个公式都觉得颇为惊艳,我们来感受一下这个公式的美:

假设所有的数值的平均数是10的话:

北京的数值是50

天津的数值是5

北京的离差就是40,而天津的离差就是-5,二者的乘积就是-200

那么如果:

北京的数值是50,

石家庄的数值是40,

北京的离差还是40,石家庄的离差就是30,二者离差的乘积就是1200

换一个更小的数值的话:

比如太原的数值是5

石家庄的数值是3

二者的离差就是-5和-7,得到的乘积就是35,还是正值。

那么从这个算法我们可以看见,两个值同时大于或者小于均值,就能得到正值,而被均值正好切开的两个值,就会得到负值——与参与计算的数值与均值偏离越大,得到的结果的绝对值就越大,所以空间上有关系的,而且有彼此接近的数值,表达成了聚集分布,而反之亦然。

高值周边聚集高值或者低值周边聚集低值,都计算为正——表示为聚集,而高低值相互交错,那么就会计算为负,表示为离散。如果有正有负,相互抵消为0,那么就表达为随机。

而公式中的分子部分,是通过方差进行归一化,因此最终该指数的值将落在 -1.0 到 +1.0 的区间内。

这就是可怕的数学家啊……天地为炉,造化为工,阴阳为炭,万物为铜

读懂了这个公式之后,给一张纸一支笔,就能够手算了,不过十个八个要素,咬咬牙能算出,但是给你180个要素来计算,估计你就要抓瞎了,所以最简单的方式,就是用现成的工具来实现,比如ArcGIS,所以下一章,我们看看在ArcGIS里面,如何利用现成的工具来进行莫兰指数的计算。

(待续未完)

CSDN的被爬虫专用声明:虾神原创,公众号\知乎:虾神说D

转发、转载和爬虫,请主动保留此声明。

这篇关于新版白话空间统计(5):莫兰指数之计算详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782455

相关文章

SpringBoot结合Knife4j进行API分组授权管理配置详解

《SpringBoot结合Knife4j进行API分组授权管理配置详解》在现代的微服务架构中,API文档和授权管理是不可或缺的一部分,本文将介绍如何在SpringBoot应用中集成Knife4j,并进... 目录环境准备配置 Swagger配置 Swagger OpenAPI自定义 Swagger UI 底

C# async await 异步编程实现机制详解

《C#asyncawait异步编程实现机制详解》async/await是C#5.0引入的语法糖,它基于**状态机(StateMachine)**模式实现,将异步方法转换为编译器生成的状态机类,本... 目录一、async/await 异步编程实现机制1.1 核心概念1.2 编译器转换过程1.3 关键组件解析

Linux权限管理与ACL访问控制详解

《Linux权限管理与ACL访问控制详解》Linux权限管理涵盖基本rwx权限(通过chmod设置)、特殊权限(SUID/SGID/StickyBit)及ACL精细授权,由umask决定默认权限,需合... 目录一、基本权限概述1. 基本权限与数字对应关系二、权限管理命令(chmod)1. 字符模式语法2.

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的