新版白话空间统计(5):莫兰指数之计算详解

2024-03-07 05:10

本文主要是介绍新版白话空间统计(5):莫兰指数之计算详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CSDN的被爬虫专用声明:虾神原创,公众号\知乎:虾神说D

转发、转载和爬虫,请主动保留此声明。

上次我们简单的介绍了一下学渣莫兰同学的逆袭之旅,梦想成为一个数学家的他最后阴差阳错的成为了一个统计学家,所以虾神不禁陷入沉思:

好了,不说数学了,我们今天继续来说莫兰指数。

我们先来看看莫兰指数的原理。

先看看下面这样一个属性数据的相关分析图,假设这是四个城市的房价数据——

当北京连续三个月上升的时候,石家庄也连续三个月上升,这样我们就可以认为(在本次分析中)北京和石家庄的房价是正相关的,所以我们记为1。

同样,北京上升的同时,太原连续三个月下降,就认为是负相关,记为-1。

北京上升,但是天津有升有降,那么这样就可以他们之间是不相关,记为0

类推,西安,正相关,记为1。

属性相关性的分析非常容易,那么到了空间自相关应该怎么办呢?虽然莫兰提出莫兰指数的时候,所谓的地理学第一定律还没有被发布(1950年,托布勒还在读大学,莫兰同学已经是牛津大学的讲师了),但是莫兰在随机概率的研究中发觉,空间分布对动物种群研究的重要性,所以开创性的在相关性研究中,加入了空间相邻的参数,如果加入空间关系,就会得到这样一个空间权重关系:

之后,四个城市之间的空间权重矩阵就应该是:

那么,最简单的对二者之间,做一个乘法,就得到这样一个值(与北京的空间自相关):

可以看见,空间关系就两种:相关 or 不相关,属性有三种:正、负、无,所以乘积就得到三种情况:

这就是莫兰指数的原理:属性与空间关系的乘积,得到最终的空间上的相关性。空间关系在自相关分析里面,起到的作用就是判定是否有关系,空间上不相关,那么属性再相关也没有用。

在这个例子里面,北京被认为与太原有临近关系,而他们的属性又正好是负相关,所以空间加权之后,就认为是空间负相关,再按照空间分布模式的规则,两个蹲在一起的,属性不相似,那就是所谓的离散关系。

而北京与石家庄在空间上也有临近关系,而且属性相似,为正相关,所以加权之后被计算为空间自相关,在自己身边有相似的伙伴,就是所谓的聚集模式。

下面我们来看看那莫兰当年给莫兰指数定义的计算公式:

好吧好吧,数学公式就不写了,有兴趣的同学见(以后可能会有的)黑话空间统计学算法篇里面的内容。我只是简单说说莫兰指数如何进行计算的基础过程:

第一件事就是计算出所有要素之间的空间关系,形成空间关系矩阵,不过用矩阵来进行存储的话,有足足50%+的浪费,所以所有的计算莫兰指数的软件,都用的稀疏矩阵来进行记录的,比如上面那个矩阵,记录的方式就是:


北京:天津、石家庄、太原

天津:北京、石家庄、太原

石家庄:北京、天津,太原

太原:北京、天津、石家庄

西安:(空)


然后以此对有关系的城市之间进行计算,因为莫兰指数计算的是截面数据,所以不可能会出现多个时间片段的数据,单个数值之间,怎么进行相关性对比呢?答案就是用属性值与平均数之间的差(离差)来进行判定。

总所周知,离差是衡量数据分布离散程度的一种非常有效的指标,所以莫兰在这里用每个要素与相邻要素的离差乘积,然后乘以空间关系系数,作为分子,然后用所有数据的离差平方和作为分母,计算出所有数据之间的离散程度来,接下去用总的要素数量除以所有空间关系权重的和,来作为总体系数权重,把二者相乘,就得到了结果,用公式表达就是:

好吧,我食言了……

从这个公式可以看出,每个要素会和与自身有空间临近关系的要素进行计算——没有临近关系,比如上面示例里面的西安,空间相关系数为0,结果自然都是0了。

从这个数学公式上面看来,莫兰同学当年的设计非常的精巧,虾神这种数学学渣到现在读到这个公式都觉得颇为惊艳,我们来感受一下这个公式的美:

假设所有的数值的平均数是10的话:

北京的数值是50

天津的数值是5

北京的离差就是40,而天津的离差就是-5,二者的乘积就是-200

那么如果:

北京的数值是50,

石家庄的数值是40,

北京的离差还是40,石家庄的离差就是30,二者离差的乘积就是1200

换一个更小的数值的话:

比如太原的数值是5

石家庄的数值是3

二者的离差就是-5和-7,得到的乘积就是35,还是正值。

那么从这个算法我们可以看见,两个值同时大于或者小于均值,就能得到正值,而被均值正好切开的两个值,就会得到负值——与参与计算的数值与均值偏离越大,得到的结果的绝对值就越大,所以空间上有关系的,而且有彼此接近的数值,表达成了聚集分布,而反之亦然。

高值周边聚集高值或者低值周边聚集低值,都计算为正——表示为聚集,而高低值相互交错,那么就会计算为负,表示为离散。如果有正有负,相互抵消为0,那么就表达为随机。

而公式中的分子部分,是通过方差进行归一化,因此最终该指数的值将落在 -1.0 到 +1.0 的区间内。

这就是可怕的数学家啊……天地为炉,造化为工,阴阳为炭,万物为铜

读懂了这个公式之后,给一张纸一支笔,就能够手算了,不过十个八个要素,咬咬牙能算出,但是给你180个要素来计算,估计你就要抓瞎了,所以最简单的方式,就是用现成的工具来实现,比如ArcGIS,所以下一章,我们看看在ArcGIS里面,如何利用现成的工具来进行莫兰指数的计算。

(待续未完)

CSDN的被爬虫专用声明:虾神原创,公众号\知乎:虾神说D

转发、转载和爬虫,请主动保留此声明。

这篇关于新版白话空间统计(5):莫兰指数之计算详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782455

相关文章

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处