零售场景梳理和运筹优化工作经验总结

2024-03-06 20:20

本文主要是介绍零售场景梳理和运筹优化工作经验总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 亡羊补牢不为迟
  • 零售行业规模大
  • 卷出零售新高度
  • 运筹优化实践经验

亡羊补牢不为迟

由于工作岗位变动的缘故,暂时要告别零售场景了。当初自己没想太多就一头扎进了“新”零售这个场景,迄今为止都没有针对零售场景做一个通盘的梳理,现在补回来,以期给后入者一个参考。

但其实,也没必要苛责自己。当初作为一个刚出校门的小白,没有贵人指点,本就很难做出全面的判断。大多数人都是边走边看边思考,唯一不同的是,我还希望把思考的结果梳理出来,然后传递给每一个可能需要的人。观点可能不全面甚至不对,但也是一个过来人的心得体会,最差也能作为大家做判断时的一个输入,哈哈。

好了,进入正题。

零售行业规模大

根据2021年10月开始实施的国家标准《零售业态分类(GB/T 18106-2021)》,零售主要指的是面向最终消费者(如居民等)的消费活动。按照有无固定营业场所,可以分为有店铺零售和无店铺零售两大类。其中,有店铺零售可以细分为便利店、超市、折扣店、仓储会员店、百货店、购物中心、专业店、品牌专卖店、集合店和无人值守商店等10种零售业态;无店铺零售包含网络零售、电视/广播零售、邮寄零售、无人售货设备零售、直销、电话零售、流动货摊零售等7种零售业态。

接下来通过一组数据直观感受一下零售行业的规模。此处,我们姑且假设网上零售等同于网络零售,并且社会消费品零售等同于零售大盘(因为没有查到网络零售和零售大盘的直接数据)。

年份网上零售额(万亿)社会消费品零售总额(万亿)网上零售占比GDP(万亿)零售/GDP
20177.2350.21830.42
20189.0380.24920.41
201910.6410.26990.41
202011.8390.301020.38
202113.1440.301140.39
202213.8440.311210.36

从上表中,至少可以得到三个结论:
(1)零售在GDP中占比约40%。这是一个非常大的比重了。所以这件事情本身,确实是非常重要的,直接关系着国计民生。
(2)2022年网上零售额的绝对值为13.8万亿。这个数值可能还是不太直观,我们再稍微对比一下。沃尔玛是薄利多销的代表,其在2022年的总销售额5727.54万亿美元,净利润为136.76亿美元,利润率为2.4%。即使我们降低利润率至1%,那么13.8万亿销售额也可以带来1千亿+的净利润。京东是“2022中国网络零售TOP100”中的第1名,其年销售额为8千亿+元,按照1%标准转化为利润的话,预计可达80亿+元。所以该场景对公司来说是非常有吸引力的。
(3)网上零售额在整个零售中占比约30%,增速逐渐趋0。这个和我们的直觉是不太一致的,如火如荼的互联网+,经过国内互联网大厂对零售行业十余年的改造,才将网络占比变为30%。根据中国互联网络信息中心发布的《第51次中国互联网络发展状况统计报告》,截至2022年12月,中国网民数量为10.67亿,网络购物用户为8.45亿。所以人口基数已经非常庞大,再想提升网上购物的占比,困难重重。市场没有了增量,公司为了各自发展,就只能“互卷”了。

卷出零售新高度

既然要卷,首先就得知道零售可以朝哪些方向卷,那就必须理清楚零售的发展历史。这里比较推荐刘润的《新零售:低价高效的数据赋能之路》,本节主要基于该书的内容,进行梳理。

零售被定义为连接“人”与“货”的“场”。最早的场是集市;然后增加了百货商场和连锁超市等;现在又增加了电商平台。随着场的演变,能够被连接的“货”的种类变多了,“人”的规模也变多了。

接下来分别从“人”、“货”和“场”来理解一下零售。
人:流量 × 转化率 × 客单价 × 复购率 人:流量\times转化率\times客单价\times复购率 人:流量×转化率×客单价×复购率
这个比较容易理解,就不多赘述了。
货: D − M − S − B − b − C 货:D-M-S-B-b-C 货:DMSBbC
D=Design,设计;M=Manufacture,制造商;S=Supply Chain,供应链;B=Business,大商场;b=business,小商店;C=consumer,消费者。

以上是一件商品从设计、生产到消费市场的完整链条。

场:信息流 + 资金流 + 物流 场:信息流+资金流+物流 场:信息流+资金流+物流
这是个新定义,举个例子说明一下,我们去超市买某件商品,会摸一摸手感品质,看一看是否过期等,这是“信息流”;觉得不错,把它放进购物车,推到收银台付钱,这是“资金流”;购买后,自己开车或者坐超市班车回家,这是“物流”。

有了以上的基本认知后,我们看一下,到目前为止零售都有了哪些新玩法。


为了便于理解,此处举个实例:Costco。Costco是世界第二大零售商,在2017年《财富》美国500强排行榜中,Costco名列第16位。在短路经济方面,Costco直接从制造商(M)采购,陈列在自己的卖场(B)里,短路了中间的供应链(S),提升了链条的效率,属于M2B;在数据赋能方面,Costco会通过大数据选择它认为有“爆款”潜质的商品上架,且包装大,量也足,能给消费者带来极好的体验;在坪效方面,通过会员制,提升了转化率和客单价,低价格高品质又能促进复购率,使得其坪效可以达到沃尔玛的2倍。

Costco代表的是一种以会员制为基础的零售方式。其核心盈利模式不在于商品本身带来的利润,而是会员费的收入。该模式目前已经基本跑通,类似的公司还有沃尔玛的山姆。

国内比较火的另外两种零售模式是:即时零售和社区团购。即时零售主打的是半小时/一小时达,目前做的有模有样的公司有盒马鲜生、叮咚买菜、美团买菜和朴朴超市等。该模式目前还没有完全跑通,各个公司都有不同程度的亏损,之前凉凉的每日优鲜就是一个例子。

社区团购的灵魂是价格实惠。在2020年前后,有大批玩家入局社区团购,比如兴盛优选、十荟团、京喜拼拼、淘菜菜、美团优选和多多买菜等。不过该模式烧钱太快,到现在为止也没找到盈利的门道,目前在市面上还占比较大份额的就只剩美团优选和多多买菜了。

运筹优化实践经验

鉴于零售行业的大规模,以及持续探索的“新”零售,运筹优化的相关算法是有一定发挥空间的。如果看零售的那张大图,其实很容易发现,运筹优化算法能够发挥的地方,主要是短路经济中的S模块,即供应链优化。

从问题场景来看,运筹优化可以应用于门店选址/规划,提升营业收入;可以应用于人员排班/定编,提升人效;可以应用于人力/资源的实时/定时调度,提升自动化效率和最优性。

从技术栈使用频率来看,最广泛被用到的的两大类算法是整数规划和启发式算法,梯度类算法较少涉及。

从关联技术来看,结合度最高的是机器学习算法,很多地方都需要预测的结果作为运筹优化算法模型的输入之一。

从实践难度来看,相比最佳的建模设计,落地后的算法采纳率往往是个更大的挑战。
造成这个现象的主要原因,目前的理解是:问题本身可能确实是个比较复杂的,但是在添加了比较多的现实约束后,问题被退化为了规模比较小的问题,业务侧基于自身经验设计的算法效果已经很好,算法能够带来的额外收益较小,甚至会降低业务侧的灵活性。

从价值体现来看,对业务有提升,但其上限大概率受限于具体的运营模式和流程;提升点主要表现在两个方面:流程自动化和结果指标更优。

这篇关于零售场景梳理和运筹优化工作经验总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/781212

相关文章

vue监听属性watch的用法及使用场景详解

《vue监听属性watch的用法及使用场景详解》watch是vue中常用的监听器,它主要用于侦听数据的变化,在数据发生变化的时候执行一些操作,:本文主要介绍vue监听属性watch的用法及使用场景... 目录1. 监听属性 watch2. 常规用法3. 监听对象和route变化4. 使用场景附Watch 的

C#利用Free Spire.XLS for .NET复制Excel工作表

《C#利用FreeSpire.XLSfor.NET复制Excel工作表》在日常的.NET开发中,我们经常需要操作Excel文件,本文将详细介绍C#如何使用FreeSpire.XLSfor.NET... 目录1. 环境准备2. 核心功能3. android示例代码3.1 在同一工作簿内复制工作表3.2 在不同

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变