如何处理.nii文件

2024-03-06 18:48
文章标签 处理 nii

本文主要是介绍如何处理.nii文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近读了一篇论文[1],是利用深度学习进行MRI图像重建的,作者在github[2]上提供给我们的他的实现代码,他使用的一个MRI分割比赛的数据集[3],但是将数据集下载下来发现全部都是.nii格式的文件,用普通的方法也是打不开的,经过一个星期的摸索,也是大概了解了如何读取以及处理.nii文件。

1. NIFTI出现原因

.nii文件是NIFTI格式的文件,出现的原因是原来一种图像格式是ANALYZE 7.5 format,但是这个图像格式缺少一些信息,比如没有方向信息,病人的左右方位等,如果需要包括额外的信息,就需要一个额外的文件,比如ANALYZE7.5就需要一对<.hdr, .img>文件来保存图像的完整信息。因此,解决这个问题Data Format Working Group (DFWG) 将图像格式完整的定义为NIFTI(Neuroimaging Informatics Technology Initiative)格式。[4]

2. 读取.nii文件

2.1 利用FSL软件读取.nii文件

FSL是一个FMRI, MRI和DTI数据的的分析库. 支持OSX和linux系统, windows需要在虚拟机运行. 所有的命令可以在命令行调用,也可以通过GUI调用.

因为我是使用Linux系统的,关于Linux系统如何安装这个软件,可以参考这篇博客[5],下面仅仅从直观上了解一下这个软件如何打开.nii文件。
我们可以调用:
fslview 052212_s09_dti.nii 命令来显示我们想要的图像。
另外,我们也可以利用FSL数据快视[6],其中一些切片拿出来在html中批量显示,一个NifTI文件对应一排切片图像, 这样就可以到达快速检查的目的。

这里写图片描述

2.2 利用matlab处理.nii文件

网上关于matlab处理.nii文件说明的都不是很清楚,这里一步一步讲解如何利用matlab读取.nii文件。
###2.2.1 准备阶段

  1. 首先需要下载一个matlab扩展包: Tools for NIfTI and ANALYZE image[7]。
  2. 因为这个需要matlab账号,所以需要的可以私聊我。然后就是将这个工具箱安装好,具体的可以参考这篇文章[8]。 针对大家有需要这个工具包的,为了方便,这里已经上传到我的github网站了,Alxemade/NIfTI_20140122
  3. 接下来就是利用这个toolbox处理我们的.nii数据了。

参考程序(matlab代码):

close all;
clear all;
clc;
cd('F:\syz\B超\test_data')
nii = load_nii( 'frame000239_img.nii' );  % 装载.nii数据
img = nii.img;  % 因为这个文件有img和head二个部分,其中img部分是图像数据
save image.mat img  % 将数据变成mat格式
load 'image.mat'  % 加载数据
[n1, n2, n3] = size(img);   % 获取.nii文件的三个维度,一般1、2维是图像维度,第三维是切片
% imshow(img(:,:,100),[]);  这个是正常显示第100个切片的图像
for i = 1:n3   % 开始切片数据轮寻figure(i)   % 开始显示图片ti = imshow(img(:,:,i),[]);  % 显示每一张切片图像pause(0.1);  % 防止显示过快看不见,简单延时
end

这样我们就可以显示.nii文件了。

2.3 利用python处理nii文件

python处理主要是利用nibabel这个包。首先我个人的各种包的版本为:

  1. nibabel 2.2.1
  2. tensorflow-gpu 1.2.0
  3. tensorlayer 1.8.3
  4. numpy 1.14.1

一开始我在使用nibabel包中的函数的时候,发现使用

nib.load(img_path).get_data()

一直出现错误:
raise ValueError('w2 should be positive, but is %e' % w2) ValueError: w2 should be positive, but is -6.401211e-07
而且更要命的是这个错误在网上找了好久没有找到解决办法,最后在一篇博客的最后找到了解决相似的问题:

上面解释说:python3.6/site-packages/nibabel/quaternions.py可能w2_thresh阈值太过于严格,所以我们需要放松一下条件。

解决:我们只需要在程序开头加上这样一句代码,原来数字是3现在将他改成10,松弛一下条件就不会出错了!

nib.Nifti1Header.quaternion_threshold = - np.finfo(np.float32).eps * 10  # 注意是负号哦
  • 1

参考程序(python版本)

import tensorlayer as tl
import numpy as np
import os
import nibabel as nib
import threading
import tensorflow as tf
import matplotlib.pyplot as plt
import scipy
from tensorlayer.prepro import *
import skimage.measurenib.Nifti1Header.quaternion_threshold = - np.finfo(np.float32).eps * 10  # 松弛一下限制
training_data_path = "Training_100"
preserving_ratio = 0.25 # filter out 2d images containing < 25% non-zerosf_train = tl.files.load_file_list(path=training_data_path,regx='.*.gz',printable=False)  # 将test测试集合中的数据以list形式存下来
X_train = []  # 处理训练集数据
for fi, f in enumerate(f_train):   # 相当于取出下标索引以及list里面相关的数据img_path = os.path.join(training_data_path, f)# print(img_path)img = nib.load(img_path).get_data()  # print(img.shape)img_3d_max = np.amax(img)  img = img / img_3d_max * 255  # 对所求的像素进行归一化变成0-255范围,这里就是三维数据for i in range(img.shape[2]):   # 对切片进行循环img_2d = img[:, :, i]  # 取出一张图像# plt.imshow(img_2d) 显示图像# plt.pause(0.001)# filter out 2d images containing < 10% non-zeros# print(np.count_nonzero(img_2d))#print("before process:", img_2d.shape)if float(np.count_nonzero(img_2d)) / img_2d.size >= preserving_ratio:  # 表示一副图像非0个数超过整副图像的10%我们才把该图像保留下来img_2d = img_2d / 127.5 - 1  # 对最初的0-255图像进行归一化到[-1, 1]范围之内img_2d = np.transpose(img_2d, (1, 0))  # 这个相当于将图像进行旋转90度# plt.imshow(img_2d)# plt.pause(0.01)X_train.append(img_2d)# print(len(X_train)) 
X_train = np.asarray(X_train, dtype=np.float32)  # 将训练的图像数据原来是list现在变成np.array格式
X_train = X_train[:, :, :, np.newaxis]  # 变成4维数据

参考文章:

  1. DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction
  2. DAGAN的github地址
  3. MICCAI 2013 grand challenge
  4. NIFTI格式(.Nii)数据version 1格式分析
  5. DTI数据处理: from scanner to statistics
  6. 核磁数据处理之: FSL数据快视
  7. Tools for NIfTI and ANALYZE image
  8. 给Matlab添加工具箱Toolbox的方法

这篇关于如何处理.nii文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/780990

相关文章

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核