最短路dp,LeetCode 1976. 到达目的地的方案数

2024-03-06 14:20

本文主要是介绍最短路dp,LeetCode 1976. 到达目的地的方案数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、题目

1、题目描述

你在一个城市里,城市由 n 个路口组成,路口编号为 0 到 n - 1 ,某些路口之间有 双向 道路。输入保证你可以从任意路口出发到达其他任意路口,且任意两个路口之间最多有一条路。

给你一个整数 n 和二维整数数组 roads ,其中 roads[i] = [ui, vi, timei] 表示在路口 ui 和 vi 之间有一条需要花费 timei 时间才能通过的道路。你想知道花费 最少时间 从路口 0 出发到达路口 n - 1 的方案数。

请返回花费 最少时间 到达目的地的 路径数目 。由于答案可能很大,将结果对 109 + 7 取余 后返回。

2、接口描述

class Solution {
public:int countPaths(int n, vector<vector<int>>& roads) {}
};

3、原题链接

1976. 到达目的地的方案数


二、解题报告

1、思路分析

比较经典的最短路问题

对于所有的最短路上的每一个点都满足沿着路径到源点的距离最短

思考我们的Dijkstra算法,只有dist[u] + w < dist[v]时会更新,而对于dist[u] + w = dist[v]的情况选择略去,而我们如果利用这一点便可以累加最短路数目

定义f[u]为s到u的最短路数目

执行Dijkstra

如果dist[u] + w < dist[v],那么f[v] = f[u],更新距离的同时v入堆

如果dist[u] + w = dist[v],那么f[v] += f[u],不更新距离也不入堆

2、复杂度

时间复杂度:O(mlogm) 空间复杂度:O(m)

3、代码详解

class Solution {
public:
typedef long long ll;
typedef pair<ll, ll> pll;
ll f[205], dist[205], mod = 1e9 + 7;int countPaths(int n, vector<vector<int>>& roads) {vector<vector<pll>> g(n);for(auto& e : roads) g[e[0]].emplace_back(e[1], e[2]), g[e[1]].emplace_back(e[0], e[2]);memset(f, 0, sizeof f), memset(dist, 0x3f, sizeof dist);priority_queue<pll, vector<pll>, greater<pll>> pq;dist[0] = 0, f[0] = 1, pq.emplace(0, 0);while(pq.size()){auto [d, u] = pq.top(); pq.pop();if(d > dist[u]) continue;for(auto [v, w] : g[u]){if(d + w < dist[v]) f[v] = f[u], pq.emplace(dist[v] = d + w, v);else if(d + w == dist[v]) f[v] = (f[v] + f[u]) % mod;}}return f[n - 1];}
};

这篇关于最短路dp,LeetCode 1976. 到达目的地的方案数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/780335

相关文章

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

利用Python实现可回滚方案的示例代码

《利用Python实现可回滚方案的示例代码》很多项目翻车不是因为不会做,而是走错了方向却没法回头,技术选型失败的风险我们都清楚,但真正能提前规划“回滚方案”的人不多,本文从实际项目出发,教你如何用Py... 目录描述题解答案(核心思路)题解代码分析第一步:抽象缓存接口第二步:实现两个版本第三步:根据 Fea

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

MySQL精准控制Binlog日志数量的三种方案

《MySQL精准控制Binlog日志数量的三种方案》作为数据库管理员,你是否经常为服务器磁盘爆满而抓狂?Binlog就像数据库的“黑匣子”,默默记录着每一次数据变动,但若放任不管,几天内这些日志文件就... 目录 一招修改配置文件:永久生效的控制术1.定位my.cnf文件2.添加核心参数不重启热更新:高手应

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索