最短路dp,LeetCode 1976. 到达目的地的方案数

2024-03-06 14:20

本文主要是介绍最短路dp,LeetCode 1976. 到达目的地的方案数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、题目

1、题目描述

你在一个城市里,城市由 n 个路口组成,路口编号为 0 到 n - 1 ,某些路口之间有 双向 道路。输入保证你可以从任意路口出发到达其他任意路口,且任意两个路口之间最多有一条路。

给你一个整数 n 和二维整数数组 roads ,其中 roads[i] = [ui, vi, timei] 表示在路口 ui 和 vi 之间有一条需要花费 timei 时间才能通过的道路。你想知道花费 最少时间 从路口 0 出发到达路口 n - 1 的方案数。

请返回花费 最少时间 到达目的地的 路径数目 。由于答案可能很大,将结果对 109 + 7 取余 后返回。

2、接口描述

class Solution {
public:int countPaths(int n, vector<vector<int>>& roads) {}
};

3、原题链接

1976. 到达目的地的方案数


二、解题报告

1、思路分析

比较经典的最短路问题

对于所有的最短路上的每一个点都满足沿着路径到源点的距离最短

思考我们的Dijkstra算法,只有dist[u] + w < dist[v]时会更新,而对于dist[u] + w = dist[v]的情况选择略去,而我们如果利用这一点便可以累加最短路数目

定义f[u]为s到u的最短路数目

执行Dijkstra

如果dist[u] + w < dist[v],那么f[v] = f[u],更新距离的同时v入堆

如果dist[u] + w = dist[v],那么f[v] += f[u],不更新距离也不入堆

2、复杂度

时间复杂度:O(mlogm) 空间复杂度:O(m)

3、代码详解

class Solution {
public:
typedef long long ll;
typedef pair<ll, ll> pll;
ll f[205], dist[205], mod = 1e9 + 7;int countPaths(int n, vector<vector<int>>& roads) {vector<vector<pll>> g(n);for(auto& e : roads) g[e[0]].emplace_back(e[1], e[2]), g[e[1]].emplace_back(e[0], e[2]);memset(f, 0, sizeof f), memset(dist, 0x3f, sizeof dist);priority_queue<pll, vector<pll>, greater<pll>> pq;dist[0] = 0, f[0] = 1, pq.emplace(0, 0);while(pq.size()){auto [d, u] = pq.top(); pq.pop();if(d > dist[u]) continue;for(auto [v, w] : g[u]){if(d + w < dist[v]) f[v] = f[u], pq.emplace(dist[v] = d + w, v);else if(d + w == dist[v]) f[v] = (f[v] + f[u]) % mod;}}return f[n - 1];}
};

这篇关于最短路dp,LeetCode 1976. 到达目的地的方案数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/780335

相关文章

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL容灾备份的实现方案

《MySQL容灾备份的实现方案》进行MySQL的容灾备份是确保数据安全和业务连续性的关键步骤,容灾备份可以分为本地备份和远程备份,主要包括逻辑备份和物理备份两种方式,下面就来具体介绍一下... 目录一、逻辑备份1. 使用mysqldump进行逻辑备份1.1 全库备份1.2 单库备份1.3 单表备份2. 恢复

redis中session会话共享的三种方案

《redis中session会话共享的三种方案》本文探讨了分布式系统中Session共享的三种解决方案,包括粘性会话、Session复制以及基于Redis的集中存储,具有一定的参考价值,感兴趣的可以了... 目录三种解决方案粘性会话(Sticky Sessions)Session复制Redis统一存储Spr

SpringBoot实现虚拟线程的方案

《SpringBoot实现虚拟线程的方案》Java19引入虚拟线程,本文就来介绍一下SpringBoot实现虚拟线程的方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录什么是虚拟线程虚拟线程和普通线程的区别SpringBoot使用虚拟线程配置@Async性能对比H

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3