【自动驾驶坐标系基础】Frenet坐标系和Cartesian坐标系的相互转换

2024-03-06 14:12

本文主要是介绍【自动驾驶坐标系基础】Frenet坐标系和Cartesian坐标系的相互转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Frenet坐标系和Cartesian坐标系的相互转换

2023.12.12

1 变量含义

在这里插入图片描述

  • Frenet和Cartesian相互转换即 [ s , s ˙ , s ¨ , d , d ˙ , d ¨ ] ↔ [ X , θ x , κ x , v x , a x ] [s,\dot{s},\ddot{s},d,\dot{d},\ddot{d}] \leftrightarrow[\boldsymbol{X},\theta_x,\kappa_x,v_x,a_x] [s,s˙,s¨,d,d˙,d¨][X,θx,κx,vx,ax]

  • 还要用到的中间变量有 n x , t x , n r , t r , r , d ′ , d ′ ′ , θ r , Δ θ , κ r , κ x ′ , κ r ′ \boldsymbol{n_x},\boldsymbol{t_x},\boldsymbol{n_r},\boldsymbol{t_r},\boldsymbol{r},d',d'',\theta_r,\Delta\theta,\kappa_r,\kappa_x',\kappa_r' nx,tx,nr,tr,r,d,d′′,θr,Δθ,κr,κx,κr

  • 各变量含义:

    变量含义
    X \boldsymbol{X} XCartesian坐标系下的坐标( X = [ x , y ] \boldsymbol{X}=[x,y] X=[x,y])
    r \boldsymbol{r} rtrajectory上的点 X \boldsymbol{X} X对应center line上最近点的Cartesian坐标
    v x , a x v_x,a_x vx,axCartesian坐标系下的速度加速度
    s , s ˙ , s ¨ s,\dot{s},\ddot{s} s,s˙,s¨Frenet坐标系下的纵向坐标及其对时间的高阶导( d d t \frac{d}{dt} dtd)
    s x s_x sxtrajectory的弧长(注:centerline弧长 s r s_r sr默认写成 s s s)
    d , d ˙ , d ¨ d,\dot{d},\ddot{d} d,d˙,d¨Frenet坐标系下的横向坐标及其对时间的高阶导( d d t \frac{d}{dt} dtd)
    d ′ , d ′ ′ d',d'' d,d′′Frenet坐标系下的横向坐标对纵向坐标的高阶导( d d s \frac{d}{ds} dsd)
    θ x , θ r \theta_x,\theta_r θx,θrCartesian坐标系下trajectory/center line的切线与x轴的夹角
    θ r ′ \theta_r' θr θ r ′ = d θ r d s r = κ r \theta_r'=\frac{d\theta_r}{ds_r}=\kappa_r θr=dsrdθr=κr
    Δ θ \Delta\theta Δθ Δ θ = θ x − θ r \Delta\theta = \theta_x - \theta_r Δθ=θxθr
    n x , t x \boldsymbol{n_x},\boldsymbol{t_x} nx,txCartesian坐标系下trajectory的法线和切线
    n x = [ − s i n θ x , c o s θ x ] T \boldsymbol{n_x}=[-sin{\theta_x},cos{\theta_x}]^T nx=[sinθx,cosθx]T
    t x = [ c o s θ x , s i n θ x ] T \boldsymbol{t_x}=[cos{\theta_x},sin{\theta_x}]^T tx=[cosθx,sinθx]T
    n r , t r \boldsymbol{n_r},\boldsymbol{t_r} nr,trCartesian坐标系下center line的法线和切线
    n r = [ − s i n θ r , c o s θ r ] T \boldsymbol{n_r}=[-sin{\theta_r},cos{\theta_r}]^T nr=[sinθr,cosθr]T
    t r = [ c o s θ r , s i n θ r ] T \boldsymbol{t_r}=[cos{\theta_r},sin{\theta_r}]^T tr=[cosθr,sinθr]T
    κ x , κ r \kappa_x,\kappa_r κx,κrCartesian坐标系下trajectory/center line的曲率
    κ x ′ , κ r ′ \kappa_x',\kappa_r' κx,κrCartesian坐标系下trajectory/center line的曲率对纵向坐标的导数( d d s \frac{d}{ds} dsd)
2 推导

先来推导 d ˙ \dot{d} d˙,由图像容易看出, d = ( x − r ) T n r d=(\boldsymbol{x}-\boldsymbol{r})^T\boldsymbol{n_r} d=(xr)Tnr,两边对t求导得:
d ˙ = [ x ˙ − r ˙ ] T n r + [ x − r ] T n ˙ r \dot{d}=[\dot{x}-\dot{r}]^T\boldsymbol{n}_r+[x-r]^T\dot{\boldsymbol{n}}_r d˙=[x˙r˙]Tnr+[xr]Tn˙r
x ˙ \dot{x} x˙很直观, x ˙ = v x t x \dot{x}=v_x\boldsymbol{t_x} x˙=vxtx,由[变化量很小时,弧长=割线=切线]的思想, r ˙ = s ˙ t r \dot{r}=\dot{s}\boldsymbol{t_r} r˙=s˙tr,最难求的是 n ˙ r \dot{\boldsymbol{n}}_r n˙r,由于 n r = [ − s i n θ r , c o s θ r ] T \boldsymbol{n_r}=[-sin{\theta_r},cos{\theta_r}]^T nr=[sinθr,cosθr]T,两边对时间求导,得到 n ˙ r = [ − cos ⁡ θ r , − s i n θ r ] T θ r ˙ = − t r θ r ′ s ˙ = − t r κ r s ˙ \dot{\boldsymbol{n}}_r=[-\cos{\theta_r},-sin{\theta_r}]^T\dot{\theta_r}=-\boldsymbol{t_r}\theta_r'\dot{s}=-\boldsymbol{t_r}\kappa_r\dot{s} n˙r=[cosθr,sinθr]Tθr˙=trθrs˙=trκrs˙,从而:
d ˙ = v x t x T n r − s ˙ t r T n r − [ x − r ] T t r κ r s ˙ = v x t x T n r ( t r , n r 正交 ; [ x − r ] , t r 正交) = v x [ c o s θ x , s i n θ x ] [ − s i n θ r , c o s θ r ] T = v x sin ⁡ Δ θ \dot{d}=v_x\boldsymbol{t_x}^T\boldsymbol{n}_r-\dot{s}\boldsymbol{t_r}^T\boldsymbol{n}_r-[x-r]^T\boldsymbol{t_r}\kappa_r\dot{s} \\=v_x\boldsymbol{t_x}^T\boldsymbol{n}_r(\boldsymbol{t_r},\boldsymbol{n}_r正交;[x-r],\boldsymbol{t_r}正交) \\=v_x[cos{\theta_x},sin{\theta_x}][-sin{\theta_r},cos{\theta_r}]^T \\=v_x\sin{\Delta\theta} d˙=vxtxTnrs˙trTnr[xr]Ttrκrs˙=vxtxTnrtr,nr正交;[xr],tr正交)=vx[cosθx,sinθx][sinθr,cosθr]T=vxsinΔθ
下面推导 d ′ d' d
d ′ = d d d s = d d d t d t d s = d ˙ s ˙ = 1 s ˙ v x sin ⁡ Δ θ d'=\frac{dd}{ds}=\frac{dd}{dt}\frac{dt}{ds}=\frac{\dot{d}}{\dot{s}}=\frac{1}{\dot{s}}v_x\sin{\Delta\theta} d=dsdd=dtdddsdt=s˙d˙=s˙1vxsinΔθ
要把未知量 s ˙ \dot{s} s˙消掉,通过 v x v_x vx来消:
v x = ∣ ∣ x ˙ ∣ ∣ 2 = ∣ ∣ d ( r + d n r ) d t ∣ ∣ 2 = s ˙ t r + d ˙ n r − d t r κ r s ˙ = ∣ ∣ [ t r , n r ] [ 1 − κ r d 0 0 1 ] [ s ˙ d ˙ ] ∣ ∣ 2 = ( 1 − κ r d ) 2 s ˙ 2 + d ˙ 2 = ( 1 − κ r d ) 2 s ˙ 2 + d ′ 2 s ˙ 2 v_x = ||\dot{x}||_2=||\frac{d(\boldsymbol{r}+d\boldsymbol{n}_r)}{dt}||_2 \\=\dot{s}\boldsymbol{t}_r+\dot{d}\boldsymbol{n}_r-d\boldsymbol{t_r}\kappa_r\dot{s} \\=||[\boldsymbol{t_r},\boldsymbol{n_r}] \begin{bmatrix} 1-\kappa_rd & 0 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} \dot{s} \\ \dot{d} \\ \end{bmatrix}||_2 \\=\sqrt{(1-\kappa_rd)^2\dot{s}^2+\dot{d}^2} \\=\sqrt{(1-\kappa_rd)^2\dot{s}^2+d'^2\dot{s}^2} vx=∣∣x˙2=∣∣dtd(r+dnr)2=s˙tr+d˙nrdtrκrs˙=∣∣[tr,nr][1κrd001][s˙d˙]2=(1κrd)2s˙2+d˙2 =(1κrd)2s˙2+d′2s˙2
代入可得:
d ′ 2 = ( 1 s ˙ v x sin ⁡ Δ θ ) 2 = [ ( 1 − κ r d ) 2 + d ′ 2 ] sin ⁡ 2 Δ θ ↓ d ′ ( 1 − sin ⁡ 2 Δ θ ) = ( 1 − κ r d ) 2 sin ⁡ 2 Δ θ ↓ d ′ = ( 1 − κ r d ) tan ⁡ Δ θ d'^2=(\frac{1}{\dot{s}}v_x\sin{\Delta\theta})^2=[(1-\kappa_rd)^2+d'^2]\sin^2{\Delta\theta} \\\downarrow \\ d'(1-\sin^2{\Delta\theta})= (1-\kappa_rd)^2\sin^2{\Delta\theta} \\\downarrow \\ d'=(1-\kappa_rd)\tan{\Delta\theta} d′2=(s˙1vxsinΔθ)2=[(1κrd)2+d′2]sin2Δθd(1sin2Δθ)=(1κrd)2sin2Δθd=(1κrd)tanΔθ
下面推导 d ′ ′ d'' d′′
d ′ ′ = d d d d s d s = d d ′ d s = ( − κ r ′ d − κ r d ′ ) tan ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ d Δ θ d s = − ( κ r ′ d + κ r d ′ ) tan ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ ( d θ x d s − d θ r d s ) = − ( κ r ′ d + κ r d ′ ) tan ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ ( d θ x d s x d s x d s − κ r ) = − ( κ r ′ d + κ r d ′ ) tan ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ ( d θ x d s x d s x / d t d s / d t − κ r ) = − ( κ r ′ d + κ r d ′ ) tan ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ ( κ x v x s ˙ − κ r ) d''=\frac{d\frac{dd}{ds}}{ds}=\frac{dd'}{ds}=(-\kappa_r'd-\kappa_rd')\tan{\Delta\theta}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}\frac{d\Delta\theta}{ds} \\=-(\kappa_r'd+\kappa_rd')\tan{\Delta\theta}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}(\frac{d\theta_x}{ds}-\frac{d\theta_r}{ds}) \\=-(\kappa_r'd+\kappa_rd')\tan{\Delta\theta}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}(\frac{d\theta_x}{ds_x}\frac{ds_x}{ds}-\kappa_r) \\=-(\kappa_r'd+\kappa_rd')\tan{\Delta\theta}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}(\frac{d\theta_x}{ds_x}\frac{ds_x/dt}{ds/dt}-\kappa_r) \\=-(\kappa_r'd+\kappa_rd')\tan{\Delta\theta}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}(\kappa_x\frac{v_x}{\dot{s}}-\kappa_r) d′′=dsddsdd=dsdd=(κrdκrd)tanΔθ+(1κrd)cos2Δθ1dsdΔθ=(κrd+κrd)tanΔθ+(1κrd)cos2Δθ1(dsdθxdsdθr)=(κrd+κrd)tanΔθ+(1κrd)cos2Δθ1(dsxdθxdsdsxκr)=(κrd+κrd)tanΔθ+(1κrd)cos2Δθ1(dsxdθxds/dtdsx/dtκr)=(κrd+κrd)tanΔθ+(1κrd)cos2Δθ1(κxs˙vxκr)

需要把未知量 s ˙ \dot{s} s˙消掉,由 0 = ( x − r ) T t r 0=(x-r)^T\boldsymbol{t}_r 0=(xr)Ttr两边对时间求导:
0 = ( x ˙ − r ˙ ) T t r + ( x − r ) T t ˙ r 0 = v x t x T t r − s ˙ t r T t r + ( x − r ) T n r κ r s ˙ 0 = v x cos ⁡ Δ θ − s ˙ ( 1 − κ r d ) ↓ v x = s ˙ 1 − κ r d cos ⁡ Δ θ 0=(\dot{x}-\dot{r})^T\boldsymbol{t}_r+(x-r)^T\dot{\boldsymbol{t}}_r \\0=v_x\boldsymbol{t}_x^T\boldsymbol{t}_r-\dot{s}\boldsymbol{t}_r^T\boldsymbol{t}_r+(x-r)^T\boldsymbol{n}_r\kappa_r\dot{s} \\0=v_x\cos{\Delta\theta}-\dot{s}(1-\kappa_rd) \\\downarrow \\v_x=\dot{s}\frac{1-\kappa_rd}{\cos{\Delta\theta}} 0=(x˙r˙)Ttr+(xr)Tt˙r0=vxtxTtrs˙trTtr+(xr)Tnrκrs˙0=vxcosΔθs˙(1κrd)vx=s˙cosΔθ1κrd
代入,得到:
d ′ ′ = − ( κ r ′ d + κ r d ′ ) tan ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ ( κ x 1 − κ r d cos ⁡ Δ θ − κ r ) d''=-(\kappa_r'd+\kappa_rd')\tan{\Delta\theta}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}(\kappa_x\frac{1-\kappa_rd}{\cos{\Delta\theta}}-\kappa_r) d′′=(κrd+κrd)tanΔθ+(1κrd)cos2Δθ1(κxcosΔθ1κrdκr)
由上上式也可以求得 s ˙ \dot{s} s˙
s ˙ = v x cos ⁡ Δ θ 1 − κ r d \dot{s}=v_x\frac{\cos{\Delta\theta}}{1-\kappa_rd} s˙=vx1κrdcosΔθ
最后来求 s ¨ \ddot{s} s¨,由 a x = v ˙ x a_x=\dot{v}_x ax=v˙x
a x = v ˙ x = s ¨ 1 − κ r d cos ⁡ Δ θ + s ˙ d s d t d d s 1 − κ r d cos ⁡ Δ θ = s ¨ 1 − κ r d cos ⁡ Δ θ + s ˙ 2 [ ( − κ r ′ d − κ r d ′ ) 1 cos ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ sin ⁡ ( Δ θ ) Δ θ ′ ] = s ¨ 1 − κ r d cos ⁡ Δ θ + s ˙ 2 1 cos ⁡ ( Δ θ ) [ ( − κ r ′ d − κ r d ′ ) + ( 1 − κ r d ) tan ⁡ ( Δ θ ) Δ θ ′ ] a_x=\dot{v}_x=\ddot{s}\frac{1-\kappa_rd}{\cos{\Delta\theta}}+\dot{s}\frac{ds}{dt}\frac{d}{ds}\frac{1-\kappa_rd}{\cos{\Delta\theta}} \\=\ddot{s}\frac{1-\kappa_rd}{\cos{\Delta\theta}}+\dot{s}^2[(-\kappa_r'd-\kappa_rd')\frac{1}{\cos{\Delta\theta}}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}\sin(\Delta\theta)\Delta\theta'] \\=\ddot{s}\frac{1-\kappa_rd}{\cos{\Delta\theta}}+\dot{s}^2\frac{1}{\cos(\Delta\theta)}[(-\kappa_r'd-\kappa_rd')+(1-\kappa_rd)\tan(\Delta\theta)\Delta\theta'] ax=v˙x=s¨cosΔθ1κrd+s˙dtdsdsdcosΔθ1κrd=s¨cosΔθ1κrd+s˙2[(κrdκrd)cosΔθ1+(1κrd)cos2Δθ1sin(Δθ)Δθ]=s¨cosΔθ1κrd+s˙2cos(Δθ)1[(κrdκrd)+(1κrd)tan(Δθ)Δθ]
其中:
Δ θ ′ = d ( θ x − θ r ) d s = d θ x d s x d s x d s − κ r = κ x v x s ˙ − κ r = κ x 1 − κ r d c o s Δ θ − κ r \Delta\theta'=\frac{d(\theta_x-\theta_r)}{ds}=\frac{d\theta_x}{ds_x}\frac{ds_x}{ds}-\kappa_r=\kappa_x\frac{v_x}{\dot{s}}-\kappa_r=\kappa_x\frac{1-\kappa_rd}{cos\Delta\theta}-\kappa_r Δθ=dsd(θxθr)=dsxdθxdsdsxκr=κxs˙vxκr=κxcosΔθ1κrdκr

3 Cartesian转Frenet
  • [ X , θ x , κ x , v x , a x ] , θ r , κ r → [ s , s ˙ , s ¨ , d , d ˙ , d ¨ ] [\boldsymbol{X},\theta_x,\kappa_x,v_x,a_x],\theta_r,\kappa_r \rightarrow [s,\dot{s},\ddot{s},d,\dot{d},\ddot{d}] [X,θx,κx,vx,ax],θr,κr[s,s˙,s¨,d,d˙,d¨]

  • s,d通过找最近点求得

  • s ˙ = v x cos ⁡ ( Δ θ ) 1 − κ r d , Δ θ = θ x − θ r \dot{s}=v_x\frac{\cos(\Delta\theta)}{1-\kappa_rd},\Delta\theta=\theta_x-\theta_r s˙=vx1κrdcos(Δθ),Δθ=θxθr

    s ¨ = cos ⁡ ( Δ θ ) 1 − κ r d [ a x − s ˙ 2 cos ⁡ ( Δ θ ) [ ( − κ r ′ d − κ r d ′ ) + ( 1 − κ r d ) tan ⁡ ( Δ θ ) Δ θ ′ ] ] \ddot{s}=\frac{\cos(\Delta\theta)}{1-\kappa_rd}[a_x-\frac{\dot{s}^2}{\cos(\Delta\theta)}[(-\kappa_r'd-\kappa_rd')+(1-\kappa_rd)\tan(\Delta\theta)\Delta\theta']] s¨=1κrdcos(Δθ)[axcos(Δθ)s˙2[(κrdκrd)+(1κrd)tan(Δθ)Δθ]]

    κ r ′ = d 2 θ r d s 2 \kappa_r'=\frac{d^2\theta_r}{ds^2} κr=ds2d2θr

    d ′ = ( 1 − κ r d ) tan ⁡ Δ θ d'=(1-\kappa_rd)\tan{\Delta\theta} d=(1κrd)tanΔθ

    Δ θ ′ = κ x 1 − κ r d c o s Δ θ − κ r , κ x = d θ x d t 1 v x \Delta\theta'=\kappa_x\frac{1-\kappa_rd}{cos\Delta\theta}-\kappa_r,\kappa_x=\frac{d\theta_x}{dt}\frac{1}{v_x} Δθ=κxcosΔθ1κrdκr,κx=dtdθxvx1

  • d ˙ = v x sin ⁡ ( Δ θ ) \dot{d}=v_x\sin(\Delta\theta) d˙=vxsin(Δθ)

    d ¨ = a x sin ⁡ ( Δ θ ) + v x cos ⁡ ( Δ θ ) s ˙ Δ θ ′ \ddot{d}=a_x\sin(\Delta\theta)+v_x\cos(\Delta\theta)\dot{s}\Delta\theta' d¨=axsin(Δθ)+vxcos(Δθ)s˙Δθ

4 Frenet转Cartesian
  • [ s , s ˙ , s ¨ , d , d ˙ , d ¨ ] → [ X , θ x , κ x , v x , a x ] [s,\dot{s},\ddot{s},d,\dot{d},\ddot{d}] \rightarrow [\boldsymbol{X},\theta_x,\kappa_x,v_x,a_x] [s,s˙,s¨,d,d˙,d¨][X,θx,κx,vx,ax]

  • X = r + n r d , n r = [ − sin ⁡ ( θ r ) , cos ⁡ ( θ r ) ] T \boldsymbol{X}=\boldsymbol{r}+\boldsymbol{n}_rd,\boldsymbol{n}_r=[-\sin(\theta_r),\cos(\theta_r)]^T X=r+nrd,nr=[sin(θr),cos(θr)]T

  • θ x = θ r + arctan ⁡ d ′ 1 − κ r d , d ′ = d ˙ s ˙ \theta_x=\theta_r+\arctan\frac{d'}{1-\kappa_rd},d'=\frac{\dot{d}}{\dot{s}} θx=θr+arctan1κrdd,d=s˙d˙

  • κ x = cos ⁡ 3 Δ θ [ d ′ ′ + ( κ r ′ d + κ r d ′ ) tan ⁡ ( Δ θ ) ] 1 − κ r d + κ r c o s Δ θ 1 − κ r d , d ′ ′ = d d d d s d s = d d ˙ s ˙ d s = d ¨ s ˙ − d ˙ s ¨ s ˙ 3 \kappa_x=\frac{\cos^3\Delta\theta[d''+(\kappa_r'd+\kappa_rd')\tan(\Delta\theta)]}{1-\kappa_rd}+\frac{\kappa_rcos\Delta\theta}{1-\kappa_rd},d''=\frac{d\frac{dd}{ds}}{ds}=\frac{d\frac{\dot{d}}{\dot{s}}}{ds}=\frac{\ddot{d}\dot{s}-\dot{d}\ddot{s}}{\dot{s}^3} κx=1κrdcos3Δθ[d′′+(κrd+κrd)tan(Δθ)]+1κrdκrcosΔθ,d′′=dsddsdd=dsds˙d˙=s˙3d¨s˙d˙s¨(由 d ′ ′ d'' d′′的式子得到)

  • v x = s ˙ 1 − κ r d cos ⁡ ( Δ θ ) , Δ θ = θ x − θ r v_x=\dot{s}\frac{1-\kappa_rd}{\cos(\Delta\theta)},\Delta\theta=\theta_x-\theta_r vx=s˙cos(Δθ)1κrd,Δθ=θxθr

  • a x = s ¨ 1 − κ r d cos ⁡ Δ θ + s ˙ 2 1 cos ⁡ ( Δ θ ) [ ( − κ r ′ d − κ r d ′ ) + ( 1 − κ r d ) tan ⁡ ( Δ θ ) Δ θ ′ ] a_x=\ddot{s}\frac{1-\kappa_rd}{\cos{\Delta\theta}}+\dot{s}^2\frac{1}{\cos(\Delta\theta)}[(-\kappa_r'd-\kappa_rd')+(1-\kappa_rd)\tan(\Delta\theta)\Delta\theta'] ax=s¨cosΔθ1κrd+s˙2cos(Δθ)1[(κrdκrd)+(1κrd)tan(Δθ)Δθ]

    κ r ′ = d 2 θ r d s 2 \kappa_r'=\frac{d^2\theta_r}{ds^2} κr=ds2d2θr

这篇关于【自动驾驶坐标系基础】Frenet坐标系和Cartesian坐标系的相互转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/780312

相关文章

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、