【自动驾驶坐标系基础】Frenet坐标系和Cartesian坐标系的相互转换

2024-03-06 14:12

本文主要是介绍【自动驾驶坐标系基础】Frenet坐标系和Cartesian坐标系的相互转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Frenet坐标系和Cartesian坐标系的相互转换

2023.12.12

1 变量含义

在这里插入图片描述

  • Frenet和Cartesian相互转换即 [ s , s ˙ , s ¨ , d , d ˙ , d ¨ ] ↔ [ X , θ x , κ x , v x , a x ] [s,\dot{s},\ddot{s},d,\dot{d},\ddot{d}] \leftrightarrow[\boldsymbol{X},\theta_x,\kappa_x,v_x,a_x] [s,s˙,s¨,d,d˙,d¨][X,θx,κx,vx,ax]

  • 还要用到的中间变量有 n x , t x , n r , t r , r , d ′ , d ′ ′ , θ r , Δ θ , κ r , κ x ′ , κ r ′ \boldsymbol{n_x},\boldsymbol{t_x},\boldsymbol{n_r},\boldsymbol{t_r},\boldsymbol{r},d',d'',\theta_r,\Delta\theta,\kappa_r,\kappa_x',\kappa_r' nx,tx,nr,tr,r,d,d′′,θr,Δθ,κr,κx,κr

  • 各变量含义:

    变量含义
    X \boldsymbol{X} XCartesian坐标系下的坐标( X = [ x , y ] \boldsymbol{X}=[x,y] X=[x,y])
    r \boldsymbol{r} rtrajectory上的点 X \boldsymbol{X} X对应center line上最近点的Cartesian坐标
    v x , a x v_x,a_x vx,axCartesian坐标系下的速度加速度
    s , s ˙ , s ¨ s,\dot{s},\ddot{s} s,s˙,s¨Frenet坐标系下的纵向坐标及其对时间的高阶导( d d t \frac{d}{dt} dtd)
    s x s_x sxtrajectory的弧长(注:centerline弧长 s r s_r sr默认写成 s s s)
    d , d ˙ , d ¨ d,\dot{d},\ddot{d} d,d˙,d¨Frenet坐标系下的横向坐标及其对时间的高阶导( d d t \frac{d}{dt} dtd)
    d ′ , d ′ ′ d',d'' d,d′′Frenet坐标系下的横向坐标对纵向坐标的高阶导( d d s \frac{d}{ds} dsd)
    θ x , θ r \theta_x,\theta_r θx,θrCartesian坐标系下trajectory/center line的切线与x轴的夹角
    θ r ′ \theta_r' θr θ r ′ = d θ r d s r = κ r \theta_r'=\frac{d\theta_r}{ds_r}=\kappa_r θr=dsrdθr=κr
    Δ θ \Delta\theta Δθ Δ θ = θ x − θ r \Delta\theta = \theta_x - \theta_r Δθ=θxθr
    n x , t x \boldsymbol{n_x},\boldsymbol{t_x} nx,txCartesian坐标系下trajectory的法线和切线
    n x = [ − s i n θ x , c o s θ x ] T \boldsymbol{n_x}=[-sin{\theta_x},cos{\theta_x}]^T nx=[sinθx,cosθx]T
    t x = [ c o s θ x , s i n θ x ] T \boldsymbol{t_x}=[cos{\theta_x},sin{\theta_x}]^T tx=[cosθx,sinθx]T
    n r , t r \boldsymbol{n_r},\boldsymbol{t_r} nr,trCartesian坐标系下center line的法线和切线
    n r = [ − s i n θ r , c o s θ r ] T \boldsymbol{n_r}=[-sin{\theta_r},cos{\theta_r}]^T nr=[sinθr,cosθr]T
    t r = [ c o s θ r , s i n θ r ] T \boldsymbol{t_r}=[cos{\theta_r},sin{\theta_r}]^T tr=[cosθr,sinθr]T
    κ x , κ r \kappa_x,\kappa_r κx,κrCartesian坐标系下trajectory/center line的曲率
    κ x ′ , κ r ′ \kappa_x',\kappa_r' κx,κrCartesian坐标系下trajectory/center line的曲率对纵向坐标的导数( d d s \frac{d}{ds} dsd)
2 推导

先来推导 d ˙ \dot{d} d˙,由图像容易看出, d = ( x − r ) T n r d=(\boldsymbol{x}-\boldsymbol{r})^T\boldsymbol{n_r} d=(xr)Tnr,两边对t求导得:
d ˙ = [ x ˙ − r ˙ ] T n r + [ x − r ] T n ˙ r \dot{d}=[\dot{x}-\dot{r}]^T\boldsymbol{n}_r+[x-r]^T\dot{\boldsymbol{n}}_r d˙=[x˙r˙]Tnr+[xr]Tn˙r
x ˙ \dot{x} x˙很直观, x ˙ = v x t x \dot{x}=v_x\boldsymbol{t_x} x˙=vxtx,由[变化量很小时,弧长=割线=切线]的思想, r ˙ = s ˙ t r \dot{r}=\dot{s}\boldsymbol{t_r} r˙=s˙tr,最难求的是 n ˙ r \dot{\boldsymbol{n}}_r n˙r,由于 n r = [ − s i n θ r , c o s θ r ] T \boldsymbol{n_r}=[-sin{\theta_r},cos{\theta_r}]^T nr=[sinθr,cosθr]T,两边对时间求导,得到 n ˙ r = [ − cos ⁡ θ r , − s i n θ r ] T θ r ˙ = − t r θ r ′ s ˙ = − t r κ r s ˙ \dot{\boldsymbol{n}}_r=[-\cos{\theta_r},-sin{\theta_r}]^T\dot{\theta_r}=-\boldsymbol{t_r}\theta_r'\dot{s}=-\boldsymbol{t_r}\kappa_r\dot{s} n˙r=[cosθr,sinθr]Tθr˙=trθrs˙=trκrs˙,从而:
d ˙ = v x t x T n r − s ˙ t r T n r − [ x − r ] T t r κ r s ˙ = v x t x T n r ( t r , n r 正交 ; [ x − r ] , t r 正交) = v x [ c o s θ x , s i n θ x ] [ − s i n θ r , c o s θ r ] T = v x sin ⁡ Δ θ \dot{d}=v_x\boldsymbol{t_x}^T\boldsymbol{n}_r-\dot{s}\boldsymbol{t_r}^T\boldsymbol{n}_r-[x-r]^T\boldsymbol{t_r}\kappa_r\dot{s} \\=v_x\boldsymbol{t_x}^T\boldsymbol{n}_r(\boldsymbol{t_r},\boldsymbol{n}_r正交;[x-r],\boldsymbol{t_r}正交) \\=v_x[cos{\theta_x},sin{\theta_x}][-sin{\theta_r},cos{\theta_r}]^T \\=v_x\sin{\Delta\theta} d˙=vxtxTnrs˙trTnr[xr]Ttrκrs˙=vxtxTnrtr,nr正交;[xr],tr正交)=vx[cosθx,sinθx][sinθr,cosθr]T=vxsinΔθ
下面推导 d ′ d' d
d ′ = d d d s = d d d t d t d s = d ˙ s ˙ = 1 s ˙ v x sin ⁡ Δ θ d'=\frac{dd}{ds}=\frac{dd}{dt}\frac{dt}{ds}=\frac{\dot{d}}{\dot{s}}=\frac{1}{\dot{s}}v_x\sin{\Delta\theta} d=dsdd=dtdddsdt=s˙d˙=s˙1vxsinΔθ
要把未知量 s ˙ \dot{s} s˙消掉,通过 v x v_x vx来消:
v x = ∣ ∣ x ˙ ∣ ∣ 2 = ∣ ∣ d ( r + d n r ) d t ∣ ∣ 2 = s ˙ t r + d ˙ n r − d t r κ r s ˙ = ∣ ∣ [ t r , n r ] [ 1 − κ r d 0 0 1 ] [ s ˙ d ˙ ] ∣ ∣ 2 = ( 1 − κ r d ) 2 s ˙ 2 + d ˙ 2 = ( 1 − κ r d ) 2 s ˙ 2 + d ′ 2 s ˙ 2 v_x = ||\dot{x}||_2=||\frac{d(\boldsymbol{r}+d\boldsymbol{n}_r)}{dt}||_2 \\=\dot{s}\boldsymbol{t}_r+\dot{d}\boldsymbol{n}_r-d\boldsymbol{t_r}\kappa_r\dot{s} \\=||[\boldsymbol{t_r},\boldsymbol{n_r}] \begin{bmatrix} 1-\kappa_rd & 0 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} \dot{s} \\ \dot{d} \\ \end{bmatrix}||_2 \\=\sqrt{(1-\kappa_rd)^2\dot{s}^2+\dot{d}^2} \\=\sqrt{(1-\kappa_rd)^2\dot{s}^2+d'^2\dot{s}^2} vx=∣∣x˙2=∣∣dtd(r+dnr)2=s˙tr+d˙nrdtrκrs˙=∣∣[tr,nr][1κrd001][s˙d˙]2=(1κrd)2s˙2+d˙2 =(1κrd)2s˙2+d′2s˙2
代入可得:
d ′ 2 = ( 1 s ˙ v x sin ⁡ Δ θ ) 2 = [ ( 1 − κ r d ) 2 + d ′ 2 ] sin ⁡ 2 Δ θ ↓ d ′ ( 1 − sin ⁡ 2 Δ θ ) = ( 1 − κ r d ) 2 sin ⁡ 2 Δ θ ↓ d ′ = ( 1 − κ r d ) tan ⁡ Δ θ d'^2=(\frac{1}{\dot{s}}v_x\sin{\Delta\theta})^2=[(1-\kappa_rd)^2+d'^2]\sin^2{\Delta\theta} \\\downarrow \\ d'(1-\sin^2{\Delta\theta})= (1-\kappa_rd)^2\sin^2{\Delta\theta} \\\downarrow \\ d'=(1-\kappa_rd)\tan{\Delta\theta} d′2=(s˙1vxsinΔθ)2=[(1κrd)2+d′2]sin2Δθd(1sin2Δθ)=(1κrd)2sin2Δθd=(1κrd)tanΔθ
下面推导 d ′ ′ d'' d′′
d ′ ′ = d d d d s d s = d d ′ d s = ( − κ r ′ d − κ r d ′ ) tan ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ d Δ θ d s = − ( κ r ′ d + κ r d ′ ) tan ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ ( d θ x d s − d θ r d s ) = − ( κ r ′ d + κ r d ′ ) tan ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ ( d θ x d s x d s x d s − κ r ) = − ( κ r ′ d + κ r d ′ ) tan ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ ( d θ x d s x d s x / d t d s / d t − κ r ) = − ( κ r ′ d + κ r d ′ ) tan ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ ( κ x v x s ˙ − κ r ) d''=\frac{d\frac{dd}{ds}}{ds}=\frac{dd'}{ds}=(-\kappa_r'd-\kappa_rd')\tan{\Delta\theta}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}\frac{d\Delta\theta}{ds} \\=-(\kappa_r'd+\kappa_rd')\tan{\Delta\theta}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}(\frac{d\theta_x}{ds}-\frac{d\theta_r}{ds}) \\=-(\kappa_r'd+\kappa_rd')\tan{\Delta\theta}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}(\frac{d\theta_x}{ds_x}\frac{ds_x}{ds}-\kappa_r) \\=-(\kappa_r'd+\kappa_rd')\tan{\Delta\theta}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}(\frac{d\theta_x}{ds_x}\frac{ds_x/dt}{ds/dt}-\kappa_r) \\=-(\kappa_r'd+\kappa_rd')\tan{\Delta\theta}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}(\kappa_x\frac{v_x}{\dot{s}}-\kappa_r) d′′=dsddsdd=dsdd=(κrdκrd)tanΔθ+(1κrd)cos2Δθ1dsdΔθ=(κrd+κrd)tanΔθ+(1κrd)cos2Δθ1(dsdθxdsdθr)=(κrd+κrd)tanΔθ+(1κrd)cos2Δθ1(dsxdθxdsdsxκr)=(κrd+κrd)tanΔθ+(1κrd)cos2Δθ1(dsxdθxds/dtdsx/dtκr)=(κrd+κrd)tanΔθ+(1κrd)cos2Δθ1(κxs˙vxκr)

需要把未知量 s ˙ \dot{s} s˙消掉,由 0 = ( x − r ) T t r 0=(x-r)^T\boldsymbol{t}_r 0=(xr)Ttr两边对时间求导:
0 = ( x ˙ − r ˙ ) T t r + ( x − r ) T t ˙ r 0 = v x t x T t r − s ˙ t r T t r + ( x − r ) T n r κ r s ˙ 0 = v x cos ⁡ Δ θ − s ˙ ( 1 − κ r d ) ↓ v x = s ˙ 1 − κ r d cos ⁡ Δ θ 0=(\dot{x}-\dot{r})^T\boldsymbol{t}_r+(x-r)^T\dot{\boldsymbol{t}}_r \\0=v_x\boldsymbol{t}_x^T\boldsymbol{t}_r-\dot{s}\boldsymbol{t}_r^T\boldsymbol{t}_r+(x-r)^T\boldsymbol{n}_r\kappa_r\dot{s} \\0=v_x\cos{\Delta\theta}-\dot{s}(1-\kappa_rd) \\\downarrow \\v_x=\dot{s}\frac{1-\kappa_rd}{\cos{\Delta\theta}} 0=(x˙r˙)Ttr+(xr)Tt˙r0=vxtxTtrs˙trTtr+(xr)Tnrκrs˙0=vxcosΔθs˙(1κrd)vx=s˙cosΔθ1κrd
代入,得到:
d ′ ′ = − ( κ r ′ d + κ r d ′ ) tan ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ ( κ x 1 − κ r d cos ⁡ Δ θ − κ r ) d''=-(\kappa_r'd+\kappa_rd')\tan{\Delta\theta}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}(\kappa_x\frac{1-\kappa_rd}{\cos{\Delta\theta}}-\kappa_r) d′′=(κrd+κrd)tanΔθ+(1κrd)cos2Δθ1(κxcosΔθ1κrdκr)
由上上式也可以求得 s ˙ \dot{s} s˙
s ˙ = v x cos ⁡ Δ θ 1 − κ r d \dot{s}=v_x\frac{\cos{\Delta\theta}}{1-\kappa_rd} s˙=vx1κrdcosΔθ
最后来求 s ¨ \ddot{s} s¨,由 a x = v ˙ x a_x=\dot{v}_x ax=v˙x
a x = v ˙ x = s ¨ 1 − κ r d cos ⁡ Δ θ + s ˙ d s d t d d s 1 − κ r d cos ⁡ Δ θ = s ¨ 1 − κ r d cos ⁡ Δ θ + s ˙ 2 [ ( − κ r ′ d − κ r d ′ ) 1 cos ⁡ Δ θ + ( 1 − κ r d ) 1 cos ⁡ 2 Δ θ sin ⁡ ( Δ θ ) Δ θ ′ ] = s ¨ 1 − κ r d cos ⁡ Δ θ + s ˙ 2 1 cos ⁡ ( Δ θ ) [ ( − κ r ′ d − κ r d ′ ) + ( 1 − κ r d ) tan ⁡ ( Δ θ ) Δ θ ′ ] a_x=\dot{v}_x=\ddot{s}\frac{1-\kappa_rd}{\cos{\Delta\theta}}+\dot{s}\frac{ds}{dt}\frac{d}{ds}\frac{1-\kappa_rd}{\cos{\Delta\theta}} \\=\ddot{s}\frac{1-\kappa_rd}{\cos{\Delta\theta}}+\dot{s}^2[(-\kappa_r'd-\kappa_rd')\frac{1}{\cos{\Delta\theta}}+(1-\kappa_rd)\frac{1}{\cos^2{\Delta\theta}}\sin(\Delta\theta)\Delta\theta'] \\=\ddot{s}\frac{1-\kappa_rd}{\cos{\Delta\theta}}+\dot{s}^2\frac{1}{\cos(\Delta\theta)}[(-\kappa_r'd-\kappa_rd')+(1-\kappa_rd)\tan(\Delta\theta)\Delta\theta'] ax=v˙x=s¨cosΔθ1κrd+s˙dtdsdsdcosΔθ1κrd=s¨cosΔθ1κrd+s˙2[(κrdκrd)cosΔθ1+(1κrd)cos2Δθ1sin(Δθ)Δθ]=s¨cosΔθ1κrd+s˙2cos(Δθ)1[(κrdκrd)+(1κrd)tan(Δθ)Δθ]
其中:
Δ θ ′ = d ( θ x − θ r ) d s = d θ x d s x d s x d s − κ r = κ x v x s ˙ − κ r = κ x 1 − κ r d c o s Δ θ − κ r \Delta\theta'=\frac{d(\theta_x-\theta_r)}{ds}=\frac{d\theta_x}{ds_x}\frac{ds_x}{ds}-\kappa_r=\kappa_x\frac{v_x}{\dot{s}}-\kappa_r=\kappa_x\frac{1-\kappa_rd}{cos\Delta\theta}-\kappa_r Δθ=dsd(θxθr)=dsxdθxdsdsxκr=κxs˙vxκr=κxcosΔθ1κrdκr

3 Cartesian转Frenet
  • [ X , θ x , κ x , v x , a x ] , θ r , κ r → [ s , s ˙ , s ¨ , d , d ˙ , d ¨ ] [\boldsymbol{X},\theta_x,\kappa_x,v_x,a_x],\theta_r,\kappa_r \rightarrow [s,\dot{s},\ddot{s},d,\dot{d},\ddot{d}] [X,θx,κx,vx,ax],θr,κr[s,s˙,s¨,d,d˙,d¨]

  • s,d通过找最近点求得

  • s ˙ = v x cos ⁡ ( Δ θ ) 1 − κ r d , Δ θ = θ x − θ r \dot{s}=v_x\frac{\cos(\Delta\theta)}{1-\kappa_rd},\Delta\theta=\theta_x-\theta_r s˙=vx1κrdcos(Δθ),Δθ=θxθr

    s ¨ = cos ⁡ ( Δ θ ) 1 − κ r d [ a x − s ˙ 2 cos ⁡ ( Δ θ ) [ ( − κ r ′ d − κ r d ′ ) + ( 1 − κ r d ) tan ⁡ ( Δ θ ) Δ θ ′ ] ] \ddot{s}=\frac{\cos(\Delta\theta)}{1-\kappa_rd}[a_x-\frac{\dot{s}^2}{\cos(\Delta\theta)}[(-\kappa_r'd-\kappa_rd')+(1-\kappa_rd)\tan(\Delta\theta)\Delta\theta']] s¨=1κrdcos(Δθ)[axcos(Δθ)s˙2[(κrdκrd)+(1κrd)tan(Δθ)Δθ]]

    κ r ′ = d 2 θ r d s 2 \kappa_r'=\frac{d^2\theta_r}{ds^2} κr=ds2d2θr

    d ′ = ( 1 − κ r d ) tan ⁡ Δ θ d'=(1-\kappa_rd)\tan{\Delta\theta} d=(1κrd)tanΔθ

    Δ θ ′ = κ x 1 − κ r d c o s Δ θ − κ r , κ x = d θ x d t 1 v x \Delta\theta'=\kappa_x\frac{1-\kappa_rd}{cos\Delta\theta}-\kappa_r,\kappa_x=\frac{d\theta_x}{dt}\frac{1}{v_x} Δθ=κxcosΔθ1κrdκr,κx=dtdθxvx1

  • d ˙ = v x sin ⁡ ( Δ θ ) \dot{d}=v_x\sin(\Delta\theta) d˙=vxsin(Δθ)

    d ¨ = a x sin ⁡ ( Δ θ ) + v x cos ⁡ ( Δ θ ) s ˙ Δ θ ′ \ddot{d}=a_x\sin(\Delta\theta)+v_x\cos(\Delta\theta)\dot{s}\Delta\theta' d¨=axsin(Δθ)+vxcos(Δθ)s˙Δθ

4 Frenet转Cartesian
  • [ s , s ˙ , s ¨ , d , d ˙ , d ¨ ] → [ X , θ x , κ x , v x , a x ] [s,\dot{s},\ddot{s},d,\dot{d},\ddot{d}] \rightarrow [\boldsymbol{X},\theta_x,\kappa_x,v_x,a_x] [s,s˙,s¨,d,d˙,d¨][X,θx,κx,vx,ax]

  • X = r + n r d , n r = [ − sin ⁡ ( θ r ) , cos ⁡ ( θ r ) ] T \boldsymbol{X}=\boldsymbol{r}+\boldsymbol{n}_rd,\boldsymbol{n}_r=[-\sin(\theta_r),\cos(\theta_r)]^T X=r+nrd,nr=[sin(θr),cos(θr)]T

  • θ x = θ r + arctan ⁡ d ′ 1 − κ r d , d ′ = d ˙ s ˙ \theta_x=\theta_r+\arctan\frac{d'}{1-\kappa_rd},d'=\frac{\dot{d}}{\dot{s}} θx=θr+arctan1κrdd,d=s˙d˙

  • κ x = cos ⁡ 3 Δ θ [ d ′ ′ + ( κ r ′ d + κ r d ′ ) tan ⁡ ( Δ θ ) ] 1 − κ r d + κ r c o s Δ θ 1 − κ r d , d ′ ′ = d d d d s d s = d d ˙ s ˙ d s = d ¨ s ˙ − d ˙ s ¨ s ˙ 3 \kappa_x=\frac{\cos^3\Delta\theta[d''+(\kappa_r'd+\kappa_rd')\tan(\Delta\theta)]}{1-\kappa_rd}+\frac{\kappa_rcos\Delta\theta}{1-\kappa_rd},d''=\frac{d\frac{dd}{ds}}{ds}=\frac{d\frac{\dot{d}}{\dot{s}}}{ds}=\frac{\ddot{d}\dot{s}-\dot{d}\ddot{s}}{\dot{s}^3} κx=1κrdcos3Δθ[d′′+(κrd+κrd)tan(Δθ)]+1κrdκrcosΔθ,d′′=dsddsdd=dsds˙d˙=s˙3d¨s˙d˙s¨(由 d ′ ′ d'' d′′的式子得到)

  • v x = s ˙ 1 − κ r d cos ⁡ ( Δ θ ) , Δ θ = θ x − θ r v_x=\dot{s}\frac{1-\kappa_rd}{\cos(\Delta\theta)},\Delta\theta=\theta_x-\theta_r vx=s˙cos(Δθ)1κrd,Δθ=θxθr

  • a x = s ¨ 1 − κ r d cos ⁡ Δ θ + s ˙ 2 1 cos ⁡ ( Δ θ ) [ ( − κ r ′ d − κ r d ′ ) + ( 1 − κ r d ) tan ⁡ ( Δ θ ) Δ θ ′ ] a_x=\ddot{s}\frac{1-\kappa_rd}{\cos{\Delta\theta}}+\dot{s}^2\frac{1}{\cos(\Delta\theta)}[(-\kappa_r'd-\kappa_rd')+(1-\kappa_rd)\tan(\Delta\theta)\Delta\theta'] ax=s¨cosΔθ1κrd+s˙2cos(Δθ)1[(κrdκrd)+(1κrd)tan(Δθ)Δθ]

    κ r ′ = d 2 θ r d s 2 \kappa_r'=\frac{d^2\theta_r}{ds^2} κr=ds2d2θr

这篇关于【自动驾驶坐标系基础】Frenet坐标系和Cartesian坐标系的相互转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/780312

相关文章

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我