基于openKylin与RISC-V的MindSpore AI项目实践

2024-03-06 04:36

本文主要是介绍基于openKylin与RISC-V的MindSpore AI项目实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目目标

  • openKylin系统上安装和配置MindSpore框架。
  • 开发一个简单的图像分类模型,并在RISC-V平台上进行训练和推理。
  • 根据RISC-V的特性,对MindSpore框架进行必要的优化。

目录

项目目标:

训练模型

编写训练代码,设置优化器、损失函数等,并开始训练模型。

模型推理

在模型训练完成后,我们可以进行推理,即使用训练好的模型对新的图像进行分类。首先,我们需要加载训练好的模型参数,然后将这些参数加载到我们的模型中。

针对RISC-V优化

部署与测试

 总结:



步骤一:安装MindSpore

  • 首先,我们需要在openKylin系统上安装MindSpore
    • 请参照MindSpore官方文档,根据openKylin系统的特性进行安装。--MindSpore官方文档

步骤二:准备数据集

  • 选择一个适合图像分类的数据集,如MNIST或CIFAR-10。下载数据集,并将其预处理为MindSpore可以识别的格式。

 (没有的开发者们可以找我哦)


步骤三:编写模型代码

  • 使用MindSpore编写一个简单的卷积神经网络(CNN)模型,用于图像分类。

 

import mindspore.nn as nn  
from mindspore import Tensor  
from mindspore.ops import operations as P  class SimpleCNN(nn.Cell):  def __init__(self, num_classes=10):  super(SimpleCNN, self).__init__()  self.conv1 = nn.Conv2d(3, 32, 3, pad_mode='same')  self.relu1 = nn.ReLU()  self.max_pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  self.conv2 = nn.Conv2d(32, 64, 3, pad_mode='same')  self.relu2 = nn.ReLU()  self.max_pool2 = nn.MaxPool2d(kernel_size=2, stride=2)  self.flatten = nn.Flatten()  self.fc1 = nn.Dense(64 * 7 * 7, 128)  self.relu3 = nn.ReLU()  self.fc2 = nn.Dense(128, num_classes)  def construct(self, x):  x = self.conv1(x)  x = self.relu1(x)  x = self.max_pool1(x)  x = self.conv2(x)  x = self.relu2(x)  x = self.max_pool2(x)  x = self.flatten(x)  x = self.fc1(x)  x = self.relu3(x)  x = self.fc2(x)  return x  # 实例化模型  
model = SimpleCNN()

  • 训练模型

  • 编写训练代码,设置优化器、损失函数等,并开始训练模型。
from mindspore import context  
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor  
from mindspore.train.loss_scale_manager import FixedLossScaleManager  
from mindspore import Tensor  
from mindspore.nn import SoftmaxCrossEntropyWithLogits  
from mindspore.train import Model  # 设置上下文环境  
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")  # 创建数据加载器  
# ...  # 创建损失函数和优化器  
criterion = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")  
optimizer = nn.Momentum(model.trainable_params(), learning_rate=0.01, momentum=0.9)  # 配置模型保存  
config_ck = CheckpointConfig(save_checkpoint_steps=1000, keep_checkpoint_max=10)  
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_simplecnn", directory="./", config=config_ck)  # 开始训练  
model = Model(model, criterion, optimizer, metrics={"Accuracy": nn.Accuracy()},  loss_scale_manager=FixedLossScaleManager())  
model.train(epoch_num, train_dataset, callbacks=[ckpoint_cb, LossMonitor(100)], dataset_sink_mode=True)

  • 模型推理

在模型训练完成后,我们可以进行推理,即使用训练好的模型对新的图像进行分类。首先,我们需要加载训练好的模型参数,然后将这些参数加载到我们的模型中。
# 加载模型参数  
param_dict = load_checkpoint("./checkpoint_simplecnn-1_1000.ckpt")  
load_param_into_net(model, param_dict)  # 设置输入图像  
# 假设我们有一个预处理后的图像tensor,名为'input_tensor',大小为[1, 3, 32, 32]  
# input_tensor = ...  # 使用模型进行推理  
output = model(input_tensor)  # 输出预测结果  
predicted_class = output.asnumpy().argmax()  
print(f"Predicted class: {predicted_class}")

  • 针对RISC-V优化

  • RISC-V架构的优化可能涉及多个层面,包括算法层面的优化、框架层面的优化以及硬件层面的优化。这里,我们主要关注框架层面的优化。
  • 算法优化:针对RISC-V的特点,如整数运算性能高、内存访问延迟大等,可以优化模型中的算法,减少浮点运算,利用RISC-V的整数运算优势。
  • 内存访问优化RISC-V的内存访问延迟可能较大,因此可以通过减少内存访问次数、优化内存访问模式(如使用缓存友好的数据结构)来减少延迟。
  • 模型剪枝与量化:通过模型剪枝减少模型复杂度,通过量化减少模型大小并加速推理。
  • 部署与测试

  • openKylin系统上部署优化后的AI应用,并进行实际测试,确保应用能够稳定运行,并且性能达到预期。


 总结:

        通过上述步骤,我们展示了如何在openKylin系统上基于MindSpore框架开发并优化一个图像分类AI应用,并部署在RISC-V平台上进行推理。这个过程涉及了模型的构建、训练、推理以及针对特定硬件架构的优化,是AI应用在实际应用中不可或缺的一部分。

这篇关于基于openKylin与RISC-V的MindSpore AI项目实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/778854

相关文章

springboot+vue项目怎么解决跨域问题详解

《springboot+vue项目怎么解决跨域问题详解》:本文主要介绍springboot+vue项目怎么解决跨域问题的相关资料,包括前端代理、后端全局配置CORS、注解配置和Nginx反向代理,... 目录1. 前端代理(开发环境推荐)2. 后端全局配置 CORS(生产环境推荐)3. 后端注解配置(按接口

Vue 2 项目中配置 Tailwind CSS 和 Font Awesome 的最佳实践举例

《Vue2项目中配置TailwindCSS和FontAwesome的最佳实践举例》:本文主要介绍Vue2项目中配置TailwindCSS和FontAwesome的最... 目录vue 2 项目中配置 Tailwind css 和 Font Awesome 的最佳实践一、Tailwind CSS 配置1. 安

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Spring Boot项目打包和运行的操作方法

《SpringBoot项目打包和运行的操作方法》SpringBoot应用内嵌了Web服务器,所以基于SpringBoot开发的web应用也可以独立运行,无须部署到其他Web服务器中,下面以打包dem... 目录一、打包为JAR包并运行1.打包为可执行的 JAR 包2.运行 JAR 包二、打包为WAR包并运行

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Nginx部署React项目时重定向循环问题的解决方案

《Nginx部署React项目时重定向循环问题的解决方案》Nginx在处理React项目请求时出现重定向循环,通常是由于`try_files`配置错误或`root`路径配置不当导致的,本文给大家详细介... 目录问题原因1. try_files 配置错误2. root 路径错误解决方法1. 检查 try_f

Spring Boot 常用注解详解与使用最佳实践建议

《SpringBoot常用注解详解与使用最佳实践建议》:本文主要介绍SpringBoot常用注解详解与使用最佳实践建议,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、核心启动注解1. @SpringBootApplication2. @EnableAutoConfi

Redis实现分布式锁全解析之从原理到实践过程

《Redis实现分布式锁全解析之从原理到实践过程》:本文主要介绍Redis实现分布式锁全解析之从原理到实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景介绍二、解决方案(一)使用 SETNX 命令(二)设置锁的过期时间(三)解决锁的误删问题(四)Re

解决Maven项目报错:failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.13.0的问题

《解决Maven项目报错:failedtoexecutegoalorg.apache.maven.plugins:maven-compiler-plugin:3.13.0的问题》这篇文章主要介... 目录Maven项目报错:failed to execute goal org.apache.maven.pl

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3