基于openKylin与RISC-V的MindSpore AI项目实践

2024-03-06 04:36

本文主要是介绍基于openKylin与RISC-V的MindSpore AI项目实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目目标

  • openKylin系统上安装和配置MindSpore框架。
  • 开发一个简单的图像分类模型,并在RISC-V平台上进行训练和推理。
  • 根据RISC-V的特性,对MindSpore框架进行必要的优化。

目录

项目目标:

训练模型

编写训练代码,设置优化器、损失函数等,并开始训练模型。

模型推理

在模型训练完成后,我们可以进行推理,即使用训练好的模型对新的图像进行分类。首先,我们需要加载训练好的模型参数,然后将这些参数加载到我们的模型中。

针对RISC-V优化

部署与测试

 总结:



步骤一:安装MindSpore

  • 首先,我们需要在openKylin系统上安装MindSpore
    • 请参照MindSpore官方文档,根据openKylin系统的特性进行安装。--MindSpore官方文档

步骤二:准备数据集

  • 选择一个适合图像分类的数据集,如MNIST或CIFAR-10。下载数据集,并将其预处理为MindSpore可以识别的格式。

 (没有的开发者们可以找我哦)


步骤三:编写模型代码

  • 使用MindSpore编写一个简单的卷积神经网络(CNN)模型,用于图像分类。

 

import mindspore.nn as nn  
from mindspore import Tensor  
from mindspore.ops import operations as P  class SimpleCNN(nn.Cell):  def __init__(self, num_classes=10):  super(SimpleCNN, self).__init__()  self.conv1 = nn.Conv2d(3, 32, 3, pad_mode='same')  self.relu1 = nn.ReLU()  self.max_pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  self.conv2 = nn.Conv2d(32, 64, 3, pad_mode='same')  self.relu2 = nn.ReLU()  self.max_pool2 = nn.MaxPool2d(kernel_size=2, stride=2)  self.flatten = nn.Flatten()  self.fc1 = nn.Dense(64 * 7 * 7, 128)  self.relu3 = nn.ReLU()  self.fc2 = nn.Dense(128, num_classes)  def construct(self, x):  x = self.conv1(x)  x = self.relu1(x)  x = self.max_pool1(x)  x = self.conv2(x)  x = self.relu2(x)  x = self.max_pool2(x)  x = self.flatten(x)  x = self.fc1(x)  x = self.relu3(x)  x = self.fc2(x)  return x  # 实例化模型  
model = SimpleCNN()

  • 训练模型

  • 编写训练代码,设置优化器、损失函数等,并开始训练模型。
from mindspore import context  
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor  
from mindspore.train.loss_scale_manager import FixedLossScaleManager  
from mindspore import Tensor  
from mindspore.nn import SoftmaxCrossEntropyWithLogits  
from mindspore.train import Model  # 设置上下文环境  
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")  # 创建数据加载器  
# ...  # 创建损失函数和优化器  
criterion = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")  
optimizer = nn.Momentum(model.trainable_params(), learning_rate=0.01, momentum=0.9)  # 配置模型保存  
config_ck = CheckpointConfig(save_checkpoint_steps=1000, keep_checkpoint_max=10)  
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_simplecnn", directory="./", config=config_ck)  # 开始训练  
model = Model(model, criterion, optimizer, metrics={"Accuracy": nn.Accuracy()},  loss_scale_manager=FixedLossScaleManager())  
model.train(epoch_num, train_dataset, callbacks=[ckpoint_cb, LossMonitor(100)], dataset_sink_mode=True)

  • 模型推理

在模型训练完成后,我们可以进行推理,即使用训练好的模型对新的图像进行分类。首先,我们需要加载训练好的模型参数,然后将这些参数加载到我们的模型中。
# 加载模型参数  
param_dict = load_checkpoint("./checkpoint_simplecnn-1_1000.ckpt")  
load_param_into_net(model, param_dict)  # 设置输入图像  
# 假设我们有一个预处理后的图像tensor,名为'input_tensor',大小为[1, 3, 32, 32]  
# input_tensor = ...  # 使用模型进行推理  
output = model(input_tensor)  # 输出预测结果  
predicted_class = output.asnumpy().argmax()  
print(f"Predicted class: {predicted_class}")

  • 针对RISC-V优化

  • RISC-V架构的优化可能涉及多个层面,包括算法层面的优化、框架层面的优化以及硬件层面的优化。这里,我们主要关注框架层面的优化。
  • 算法优化:针对RISC-V的特点,如整数运算性能高、内存访问延迟大等,可以优化模型中的算法,减少浮点运算,利用RISC-V的整数运算优势。
  • 内存访问优化RISC-V的内存访问延迟可能较大,因此可以通过减少内存访问次数、优化内存访问模式(如使用缓存友好的数据结构)来减少延迟。
  • 模型剪枝与量化:通过模型剪枝减少模型复杂度,通过量化减少模型大小并加速推理。
  • 部署与测试

  • openKylin系统上部署优化后的AI应用,并进行实际测试,确保应用能够稳定运行,并且性能达到预期。


 总结:

        通过上述步骤,我们展示了如何在openKylin系统上基于MindSpore框架开发并优化一个图像分类AI应用,并部署在RISC-V平台上进行推理。这个过程涉及了模型的构建、训练、推理以及针对特定硬件架构的优化,是AI应用在实际应用中不可或缺的一部分。

这篇关于基于openKylin与RISC-V的MindSpore AI项目实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/778854

相关文章

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

vite搭建vue3项目的搭建步骤

《vite搭建vue3项目的搭建步骤》本文主要介绍了vite搭建vue3项目的搭建步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1.确保Nodejs环境2.使用vite-cli工具3.进入项目安装依赖1.确保Nodejs环境

idea+spring boot创建项目的搭建全过程

《idea+springboot创建项目的搭建全过程》SpringBoot是Spring社区发布的一个开源项目,旨在帮助开发者快速并且更简单的构建项目,:本文主要介绍idea+springb... 目录一.idea四种搭建方式1.Javaidea命名规范2JavaWebTomcat的安装一.明确tomcat

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

springboot依靠security实现digest认证的实践

《springboot依靠security实现digest认证的实践》HTTP摘要认证通过加密参数(如nonce、response)验证身份,避免明文传输,但存在密码存储风险,相比基本认证更安全,却因... 目录概述参数Demopom.XML依赖Digest1Application.JavaMyPasswo

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Java 结构化并发Structured Concurrency实践举例

《Java结构化并发StructuredConcurrency实践举例》Java21结构化并发通过作用域和任务句柄统一管理并发生命周期,解决线程泄漏与任务追踪问题,提升代码安全性和可观测性,其核心... 目录一、结构化并发的核心概念与设计目标二、结构化并发的核心组件(一)作用域(Scopes)(二)任务句柄

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche