【深度学习笔记】5_8 网络中的网络NiN

2024-03-05 19:28
文章标签 学习 笔记 深度 网络 nin

本文主要是介绍【深度学习笔记】5_8 网络中的网络NiN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图

5.8 网络中的网络(NiN)

前几节介绍的LeNet、AlexNet和VGG在设计上的共同之处是:先以由卷积层构成的模块充分抽取空间特征,再以由全连接层构成的模块来输出分类结果。其中,AlexNet和VGG对LeNet的改进主要在于如何对这两个模块加宽(增加通道数)和加深。本节我们介绍网络中的网络(NiN)[1]。它提出了另外一个思路,即串联多个由卷积层和“全连接”层构成的小网络来构建一个深层网络。

5.8.1 NiN块

我们知道,卷积层的输入和输出通常是四维数组(样本,通道,高,宽),而全连接层的输入和输出则通常是二维数组(样本,特征)。如果想在全连接层后再接上卷积层,则需要将全连接层的输出变换为四维。回忆在5.3节(多输入通道和多输出通道)里介绍的 1 × 1 1\times 1 1×1卷积层。它可以看成全连接层,其中空间维度(高和宽)上的每个元素相当于样本,通道相当于特征。因此,NiN使用 1 × 1 1\times 1 1×1卷积层来替代全连接层,从而使空间信息能够自然传递到后面的层中去。图5.7对比了NiN同AlexNet和VGG等网络在结构上的主要区别。

在这里插入图片描述

图5.7 左图是AlexNet和VGG的网络结构局部,右图是NiN的网络结构局部

NiN块是NiN中的基础块。它由一个卷积层加两个充当全连接层的 1 × 1 1\times 1 1×1卷积层串联而成。其中第一个卷积层的超参数可以自行设置,而第二和第三个卷积层的超参数一般是固定的。

import time
import torch
from torch import nn, optimimport sys
sys.path.append("..") 
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')def nin_block(in_channels, out_channels, kernel_size, stride, padding):blk = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1),nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1),nn.ReLU())return blk

5.8.2 NiN模型

NiN是在AlexNet问世不久后提出的。它们的卷积层设定有类似之处。NiN使用卷积窗口形状分别为 11 × 11 11\times 11 11×11 5 × 5 5\times 5 5×5 3 × 3 3\times 3 3×3的卷积层,相应的输出通道数也与AlexNet中的一致。每个NiN块后接一个步幅为2、窗口形状为 3 × 3 3\times 3 3×3的最大池化层。

除使用NiN块以外,NiN还有一个设计与AlexNet显著不同:NiN去掉了AlexNet最后的3个全连接层,取而代之地,NiN使用了输出通道数等于标签类别数的NiN块,然后使用全局平均池化层对每个通道中所有元素求平均并直接用于分类。这里的全局平均池化层即窗口形状等于输入空间维形状的平均池化层。NiN的这个设计的好处是可以显著减小模型参数尺寸,从而缓解过拟合。然而,该设计有时会造成获得有效模型的训练时间的增加。

# 已保存在d2lzh_pytorch
import torch.nn.functional as F
class GlobalAvgPool2d(nn.Module):# 全局平均池化层可通过将池化窗口形状设置成输入的高和宽实现def __init__(self):super(GlobalAvgPool2d, self).__init__()def forward(self, x):return F.avg_pool2d(x, kernel_size=x.size()[2:])net = nn.Sequential(nin_block(1, 96, kernel_size=11, stride=4, padding=0),nn.MaxPool2d(kernel_size=3, stride=2),nin_block(96, 256, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(kernel_size=3, stride=2),nin_block(256, 384, kernel_size=3, stride=1, padding=1),nn.MaxPool2d(kernel_size=3, stride=2), nn.Dropout(0.5),# 标签类别数是10nin_block(384, 10, kernel_size=3, stride=1, padding=1),GlobalAvgPool2d(), # 将四维的输出转成二维的输出,其形状为(批量大小, 10)d2l.FlattenLayer())

我们构建一个数据样本来查看每一层的输出形状。

X = torch.rand(1, 1, 224, 224)
for name, blk in net.named_children(): X = blk(X)print(name, 'output shape: ', X.shape)

输出:

0 output shape:  torch.Size([1, 96, 54, 54])
1 output shape:  torch.Size([1, 96, 26, 26])
2 output shape:  torch.Size([1, 256, 26, 26])
3 output shape:  torch.Size([1, 256, 12, 12])
4 output shape:  torch.Size([1, 384, 12, 12])
5 output shape:  torch.Size([1, 384, 5, 5])
6 output shape:  torch.Size([1, 384, 5, 5])
7 output shape:  torch.Size([1, 10, 5, 5])
8 output shape:  torch.Size([1, 10, 1, 1])
9 output shape:  torch.Size([1, 10])

5.8.3 获取数据和训练模型

我们依然使用Fashion-MNIST数据集来训练模型。NiN的训练与AlexNet和VGG的类似,但这里使用的学习率更大。

batch_size = 128
# 如出现“out of memory”的报错信息,可减小batch_size或resize
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)lr, num_epochs = 0.002, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

输出:

training on  cuda
epoch 1, loss 0.0101, train acc 0.513, test acc 0.734, time 260.9 sec
epoch 2, loss 0.0050, train acc 0.763, test acc 0.754, time 175.1 sec
epoch 3, loss 0.0041, train acc 0.808, test acc 0.826, time 151.0 sec
epoch 4, loss 0.0037, train acc 0.828, test acc 0.827, time 151.0 sec
epoch 5, loss 0.0034, train acc 0.839, test acc 0.831, time 151.0 sec

小结

  • NiN重复使用由卷积层和代替全连接层的 1 × 1 1\times 1 1×1卷积层构成的NiN块来构建深层网络。
  • NiN去除了容易造成过拟合的全连接输出层,而是将其替换成输出通道数等于标签类别数的NiN块和全局平均池化层。
  • NiN的以上设计思想影响了后面一系列卷积神经网络的设计。

参考文献

[1] Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400.


注:除代码外本节与原书此节基本相同,原书传送门

这篇关于【深度学习笔记】5_8 网络中的网络NiN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/777566

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio