C++惯用法之RAII思想: 资源管理

2024-03-05 10:44

本文主要是介绍C++惯用法之RAII思想: 资源管理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C++编程技巧专栏:http://t.csdnimg.cn/eolY7

目录

1.概述

 2.RAII的应用

2.1.智能指针

2.2.文件句柄管理

2.3.互斥锁

3.注意事项

3.1.禁止复制

3.2.对底层资源使用引用计数法

3.3.复制底部资源(深拷贝)或者转移资源管理权(移动语义)

4.RAII的优势和挑战

5.总结


1.概述

        RAII是Resource Acquisition Is Initialization的缩写,即“资源获取即初始化”。RAII原则的基本思想是将资源的生命周期与对象的生命周期绑定在一起。它是C++语言的一种管理资源、避免资源泄漏的惯用法,利用栈的特点来实现,这一概念最早由Bjarne Stroustrup提出。在函数中由栈管理的临时对象,在函数结束时会自动析构,从而自动释放资源,因此,我们可以通过构造函数获取资源,通过析构函数释放资源。这种自动管理资源的方式可以大大减少资源泄漏、野指针和其他与资源管理相关的问题。常见的写法为:

Object() {// acquire resource in constructor
}
~Object() {// release resource in destructor
}

 2.RAII的应用

2.1.智能指针

智能指针是RAII原则在内存管理中的一个典型应用。C++11引入了多种智能指针类型,如std::unique_ptr、std::shared_ptr和std::weak_ptr,它们可以自动管理动态分配的内存。

例如,使用std::unique_ptr可以确保在不需要动态分配的内存时自动释放它:

#include <iostream>
#include <memory>class MyClass {
public:MyClass() { std::cout << "MyClass created\n"; }~MyClass() { std::cout << "MyClass destroyed\n"; }
};int main() {{std::unique_ptr<MyClass> ptr(new MyClass()); // MyClass对象被创建// 当ptr离开这个作用域时,它会自动释放所指向的MyClass对象} // MyClass对象在这里被销毁,输出"MyClass destroyed"return 0;
}

在这个例子中,当ptr离开其作用域时,std::unique_ptr的析构函数会被调用,从而释放它所指向的MyClass对象。这种自动的内存管理方式避免了手动调用delete可能导致的错误。

2.2.文件句柄管理

另一个常见的应用是使用RAII原则管理文件句柄。通过创建一个封装了文件句柄的类,可以确保在不需要文件时自动关闭它。

例如:

#include <fstream>
#include <iostream>class FileWrapper {
public:FileWrapper(const std::string& filename, std::ios_base::openmode mode): file_(filename, mode) {if (!file_.is_open()) {throw std::runtime_error("无法打开文件: " + filename);}}~FileWrapper() {file_.close(); // 在析构函数中关闭文件句柄}// 提供对内部文件的访问(如果需要的话)std::fstream& file() { return file_; }private:std::fstream file_; // 封装文件句柄的成员变量
};

在这个例子中,FileWrapper类的构造函数打开一个文件,并在析构函数中关闭它。这确保了即使在异常情况下,文件句柄也会被正确关闭。

2.3.互斥锁

在多线程编程中,std::lock_guard, std::unique_lock, std::shared_lock等也利用了RAII的原理,用于管理互斥锁。当这些类的等对象创建时,会自动获取互斥锁;当对象销毁时,会自动释放互斥锁。

std::lock_guard的构造函数如下:

template< class Mutex > class lock_guard;

std::lock_guard的析构函数会自动释放互斥锁,因此,我们可以通过std::lock_guard来管理互斥锁,从而避免忘记释放互斥锁。如:

std::mutex mtx;
std::lock_guard<std::mutex> lock(mtx); // unlock when lock is out of scope

不使用RAII的情况下,我们需要手动释放互斥锁,如下所示:

std::mutex mtx;
mtx.lock();
// ...
mtx.unlock();

3.注意事项

在资源管理类中小心copy行为

  • 拷贝RAII对象必须考虑其管理的资源,针对其资源做出拷贝行为的实现
  • 常见的RAII对象拷贝行为:拒绝拷贝、引用计数法、深拷贝、资源所有权转移

并非所有资源都是基于堆的(heap-based),对于这种对象不能直接使用智能指针,需要自定义其资源管理类。例如:为了说明锁的资源管理行为,我们这里给定义一个锁,来替代C++里的锁

struct MyMutex {MyMutex() {printf("Construct MyMutex\n");}~MyMutex() {printf("Deconstruct MyMutex\n");}
};

其上锁解锁行为:

void lock(MyMutex *) {printf("lock\n");
}void unlock(MyMutex *) {printf("unlock\n");
}

锁的资源管理类,在构造函数获取资源(加锁),在析构函数释放资源(解锁):

struct Lock {
private:MyMutex *myMutex;
public:explicit Lock(MyMutex *mutex) : myMutex(mutex) {lock(myMutex);}~Lock() {unlock(myMutex);}
};

使用:

int main() {MyMutex myMutex;{printf("---------\n");Lock lk(&myMutex);printf("---------\n");// 离开代码块将自动析构局部对象,因此会释放锁}
}
/*
Construct MyMutex
---------
lock
---------
unlock
Deconstruct MyMutex
*/

潜在风险,如果发生了拷贝行为:

Lock l1(&mutex);
Lock l2(l1);

那么将立即死锁(Linux里一般是非递归锁,重复加锁会造成死锁)

3.1.禁止复制

继承nocopyable,或者将拷贝相关函数设置为delete。如:

//[1]
class NonCopyable
{
protected:NonCopyable(const NonCopyable&){}NonCopyable& operator=(NonCopyable&){}
};或//[2]
class NonCopyable
{
public:NonCopyable(const NonCopyable&)=delete;NonCopyable& operator=(const NonCopyable&)=delete;
};

3.2.对底层资源使用引用计数法

思想:维护一个计数器,当最后一个使用者被销毁时,才真正释放资源,如:

struct Lock {
private:shared_ptr<MyMutex> mutexPtr;
public:// 将unlock函数设置为删除器explicit Lock(MyMutex *mutex) : mutexPtr(mutex, unlock) {lock(mutexPtr.get());}// 不必声明析构函数,因为mutexPtr是栈上对象,所以会被默认释放,那么智能指针就会调用其释放器unlock
};

3.3.复制底部资源(深拷贝)或者转移资源管理权(移动语义)

在资源管理类中提供对原始资源的访问

  • API常需要要求访问原始资源,所以RAII资源管理类应该提供访问原始资源的接口
  • 对原始资源可以由显示转换或者隐式转换获得.其在安全性和方便性上各有取舍

智能指针提供了get接口来访问原始资源

在其中要注意,不可以get一个智能指针去初始化另一个智能指针,否则会发生重复释放

int main() {shared_ptr<MyMutex> p1 = make_shared<MyMutex>();{shared_ptr<MyMutex> p2(p1.get());cout << p1.use_count() << " " << p2.use_count() << endl;
//        1 1
//        p2离开代码块,释放其管理的资源,p1指针指向被释放的内存}
}

程序将异常退出

4.RAII的优势和挑战

优势:

  1. 自动资源管理:通过绑定资源的生命周期与对象的生命周期,RAII自动处理资源的获取和释放,减少了手动管理的错误。

  2. 代码简洁性:RAII原则鼓励将资源管理逻辑封装在类中,使代码更加清晰和易于维护。

  3. 异常安全性:当使用RAII时,即使在异常情况下,资源也会被正确释放,这有助于提高程序的健壮性。

挑战:

  1. 资源所有权的转移:在使用RAII时,需要仔细考虑资源所有权的转移。例如,在使用智能指针时,需要明确何时使用std::move来转移所有权。

  2. 与旧代码的兼容性:在将RAII原则应用于现有代码库时,可能需要大量的重构工作来适应新的资源管理方式。

  3. 学习曲线:对于初学者来说,理解和正确应用RAII原则可能需要一些时间和经验。

5.总结

        RAII原则为C++程序员提供了一种强大且优雅的资源管理方法。通过将资源的生命周期与对象的生命周期绑定在一起,RAII不仅简化了资源管理,还提高了代码的健壮性和可维护性。然而,为了充分利用RAII的优势,程序员需要仔细设计类的接口和实现,并考虑到资源所有权和资源转移的问题。

这篇关于C++惯用法之RAII思想: 资源管理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776260

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c