使用Julia语言及R语言进行格拉布斯检验

2024-03-05 10:12

本文主要是介绍使用Julia语言及R语言进行格拉布斯检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  在日常的计量检测工作中经常会处理各种数据,在处理数据之前会提前使用格拉布斯准则查看数据中是否存在异常值,如果存在异常值的话应该重新进行计量检测,没有异常值则对数据进行下一步操作。判断异常值常用的格拉布斯方法基于数据来自正态分布的假设,通过计算格拉布斯统计量(G值)并与临界值进行比较来判断数据点是否为离群值,分为双边检验和单侧检验,双边检验用于检测数据集中最大和最小值是否为异常值,而单侧检验则仅关注最大值或最小值。

计算过程及Markdown版本公式代码

先计算平均值和标准差

  

Markdown版本的公式代码:

**计算样本均值和标准差**:
计算给定数据集的样本均值(\(\overline{x}\))和样本标准差(\(s\)),其中样本标准差使用 \(n - 1\) 作为分母(\(n\) 为样本量)。
样品均值计算公式:
$$
\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
$$
其中:  - $\overline{x}$ 表示样本均值  
- $n$ 表示样本中的观测值数量  
- $x_i$ 表示样本中的第 $i$ 个观测值  
- $\sum_{i=1}^{n} x_i$ 表示从第1个观测值到第$n$个观测值的和  标准差计算公式:
$$
s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}
$$
其中:  - $s$ 表示样本标准差  
- $n$ 表示样本中的观测值数量  
- $x_i$ 表示样本中的第 $i$ 个观测值  
- $\overline{x}$ 表示样本均值  
- $\sum_{i=1}^{n} (x_i - \overline{x})^2$ 表示各观测值与均值之差的平方和

随后计算格拉布斯统计量Gi并找出最大的格拉布斯统计量,通常取置信度95%,显著性水平a为0.05,根据样本量和显著性水平查找格拉布斯检验的临界值 G(a,n)

Markdown版本的公式代码:

**计算格拉布斯统计量**:
1.对于数据集中的每个数据点 \(x_i\),计算其格拉布斯统计量 \(G_i\),公式如下:\[ G_i = \frac{|x_i - \overline{x}|}{s} \]这里,\(|x_i - \overline{x}|\) 是数据点 \(x_i\) 与样本均值 \(\overline{x}\) 之差的绝对值。
2. **找出最大格拉布斯统计量**:从所有计算出的 \(G_i\) 值中找出最大值 \(G_{\text{max}}\)。
3. **确定显著性水平和临界值**:选择一个显著性水平 \(\alpha\)(如 0.05 或 0.01),并查找或计算对应样本量和显著性水平的格拉布斯临界值 \(G_{\text{critical}}\)。临界值通常通过查表或使用统计软件获得。
4. **比较最大格拉布斯统计量与临界值**:如果 \(G_{\text{max}} > G_{\text{critical}}\),则拒绝原假设,认为最大格拉布斯统计量对应的数据点是离群值。否则,接受原假设,认为数据集中没有离群值。5.格拉布斯检验法的公式:- 格拉布斯统计量:\(G_i = \frac{|x_i - \overline{x}|}{s}\)
- 最大格拉布斯统计量:\(G_{\text{max}} = \max_{1 \leq i \leq n} G_i\)

 我在平时简单应用的时候是计算器算一下然后查表

 Julia语言实现

需要先下载 Statistics包

using Pkg
Pkg.add("Statistics")
using Statistics  function grubbs_test(data::Vector{Float64}, alpha::Float64)  n = length(data)  if n < 3  error("Sample size must be at least 3 for Grubbs' test")  end  g_critical = 1.933  mean_val = mean(data)  std_dev = std(data, corrected=true)  # 使用n-1计算样本标准差  # 计算每个点与均值的绝对差值,并除以标准差,然后找出最大的g值  g_values = abs.(data .- mean_val) ./ std_dev  g_max = maximum(g_values)  # 判断是否存在离群值  if g_max > g_critical  return (true, g_max)  else  return (false, g_max)  end  
end  data = [0.55, 0.51, 0.56, 0.49, 0.52, 0.12]  
alpha = 0.05  # 显著性水平  
has_outlier, g_max = grubbs_test(data, alpha)  
println("Has outlier: $has_outlier")  
println("G max: $g_max")

 运行结果:存在异常值,最大G值为2.017,目前只是判断了这组样本数据中有没有存在异常值,但还未揪出异常值,效果并不太好。此时,一刻也没有为Julia加速,立刻赶到战场的是R语言。

R语言实现 

先下载R包 outliers 然后:

library(outliers)data <- c(0.55, 0.51, 0.56, 0.49, 0.52, 0.12)  
# 执行格拉布斯检验  
result <- grubbs.test(data)  
print(result)

运行结果 ,四行代码快速解决战斗,坑爹异常值是0.12。

这篇关于使用Julia语言及R语言进行格拉布斯检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776180

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格