《深入理解Java虚拟机之栈帧的结构》

2024-03-05 09:40

本文主要是介绍《深入理解Java虚拟机之栈帧的结构》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  Java虚拟机栈是线程私有的,它描述的是Java方法执行的内存模型:每个方法在执行的同时会创建一个栈帧用于存局部变量表、操作数栈、动态链接、方法返回地址等信息。每一个方法从调用到执行完毕的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

  每一个栈帧都包含了局部变量表、操作数栈、动态链接、方法返回地址和一些额外的附加信息。在编译成class文件后,栈帧中需要多大的局部变量表和多深的操作数栈已经保存在字节码文件(class文件)的code属性中,因此一个栈帧需要分配多少内存,不会受到程序运行的影响,只会根据虚拟机的具体实现不同。

  一个线程中的方法调用链可能会很长,即有很多栈帧。对于一个当前活动的线程中,只有位于线程栈顶的栈帧才是有效的,称为当前栈帧(current stack Frame),这个栈帧关联的方法称为当前方法(current method),栈帧的概念图如下:


  局部变量表

  局部变量表是一组变量存储空间,用于存储方法参数和方法内部定义局部变量。在Java代码被编译成class文件,就在方法的code属性里通过max_locals数据项确立了该方法所需要分配的最大局部变量表容量。

  局部变量表的容量以容量槽为最小单位(slot),虚拟机规范并没有强制规定slot的大小,只是规定long和double两种64位长度的数据类型占用两个连续的slot,其它类型占用1个slot。

  虚拟机通过索引的定位方式使用局部变量表,索引值的范围为0到局部变量的最大slot值,在非static方法中,0代表的是“ this”,即当前调用该方法的引用,其余参数从1开始分配,当参数列表中的参数分配完后,就开始给方法内的局部变量分配。

  局部变量表中的slot是可以重用的,方法中定义的变量,其作用域并不一定会覆盖整个方法体,如果当前PC计数器的值已经超出了某个量的作用域,那么这个变量的slot可以交给其他slot使用,这样可以节省栈的空间。但是有的时候会对垃圾收集器GC有一定的影响。

public static void main(String[] args) {byte[] placeholder = new byte[64 * 1024 * 1024];System.gc();}
   如上面的代码,会像堆内存中填充64MB的数据,虚拟机参数加入 -verbose:gc ,然后手动调用gc进行垃圾回收,我们发现并没有回收这64MB的内存结果如下:


  因为调用gc的时候,变量placeholder还处于作用域之内,所以不会被回收。然后我们对代码进行第一次修改,将该数组的创建放在代码快中:

  public static void main(String[] args) {{byte[] placeholder = new byte[64 * 1024 * 1024];}System.gc();}
   加入花括号后,placeholder变量和gc处于两个不同的作用域,所以当执行gc的时候,该变量已经不在作用域内了,按理来说gc应该会回收这64MB的数据,但是事实上依然没有:


  我们对代码进行第三次修改:

 public static void main(String[] args) {{byte[] placeholder = new byte[64 * 1024 * 1024];}int a = 0;System.gc();}
  我们再次执行该代码,发现64MB的数据确实被回收了:


  在上面三段代码中,placeholder能否被回收的根本原因就是:局部变量表中的slot是否还存有placeholder数组对象的引用,第一次修改后,代码虽然离开了placeholder的作用域,但是在此之后,没有任何对局部变量的读写操作,placeholder原本占用的slot还没有被其它变量服用,所以gc Roots依然能找到该变量的指向堆内存对象的引用链,不会进行回收。在第二次修改后,由于int a=0 会将placeholder的slot的复用,所以该数组数据会被回收。我们可以使用手动设置该变量为null值来达到同样的效果,但是也不能对手动设置null这种方法过多的依赖。

 

  操作数栈

  操作数栈又被称为操作栈,它是一个后入先出的栈结构。同局部变量表一样, 在将代码编译成class文件时通过code属性的max_locals确定了操作数栈的最大深度。操作数栈中的每个元素可以是java中任何一种数据类型,32位的数据占1个栈容量,64位的数据占2个栈容量。

  当一个方法刚开始执行时,操作数栈里是空的,在方法的执行过程中,会有各种字节码指令向操作数栈中写入和提取内容,也就是出栈和入栈的过程。例如,在执行字节码指令iadd(两个int类型整数相加)时要求操作数栈中最接近栈顶的两个元素已经存入两个int类型的值,然后执行相加时,会将这两个int值相加,然后将相加的结果入栈。

  另外在虚拟机概念模型中,两个栈帧作为虚拟机栈的元素,相互之间完全是独立的。但大多数虚拟机的实现都会做一些优化处理, 令两个栈帧出现一部分重叠。让下面栈帧部分的操作数栈和上面栈帧部分的局部变量表重叠在一起,这样在进行方法调用的时候就可以共用一些数据了,无需额外的参数复制传递过程,重叠过程如下图所示:



  动态链接

  每个栈帧都包含一个指向运行时常量池中该栈帧所属性方法的引用,持有这个引用是为了支持方法调用过程中的动态连接。在Class文件的常量池中存有大量的符号引用,字节码中的方法调用指令就以常量池中指向方法的符号引用为参数。这些符号引用一部分会在类加载阶段或第一次使用的时候转化为直接引用,这种转化称为静态解析。另外一部分将在每一次的运行期期间转化为直接引用,这部分称为动态连接。

  

  方法返回地址

   当一个方法被执行后,有两种方式退出这个方法。第一种方式是执行引擎遇到任意一个方法返回的字节码指令,这时候可能会有返回值传递给上层的方法调用者(调用当前方法的的方法称为调用者),是否有返回值和返回值的类型将根据遇到何种方法返回指令来决定,这种退出方法方式称为正常完成出口(Normal Method Invocation Completion)。
   另外一种退出方式是,在方法执行过程中遇到了异常,并且这个异常没有在方法体内得到处理,无论是Java虚拟机内部产生的异常,还是代码中使用athrow字节码指令产生的异常,只要在本方法的异常表中没有搜索到匹配的异常处理器,就会导致方法退出,这种退出方式称为异常完成出口(Abrupt Method Invocation Completion)。一个方法使用异常完成出口的方式退出,是不会给它的调用都产生任何返回值的。
   无论采用何种方式退出,在方法退出之前,都需要返回到方法被调用的位置,程序才能继续执行,方法返回时可能需要在栈帧中保存一些信息,用来帮助恢复它的上层方法的执行状态。一般来说,方法正常退出时,调用者PC计数器的值就可以作为返回地址,栈帧中很可能会保存这个计数器值。而方法异常退出时,返回地址是要通过异常处理器来确定的,栈帧中一般不会保存这部分信息。
   方法退出的过程实际上等同于把当前栈帧出栈,因此退出时可能执行的操作有:恢复上层方法的局部变量表和操作数栈,把返回值(如果有的话)压入调用都栈帧的操作数栈中,调用PC计数器的值以指向方法调用指令后面的一条指令等。


 附加信息

 虚拟机规范允许具体的虚拟机实现增加一些规范里没有描述的信息到栈帧中,例如与高度相关的信息,这部分信息完全取决于具体的虚拟机实现。在实际开发中,一般会把动态连接,方法返回地址与其它附加信息全部归为一类,称为栈帧信息。

这篇关于《深入理解Java虚拟机之栈帧的结构》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776083

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏